
TRANSFER STRAND

A Taxonomy for Categorizing
Generalizations: Generalizing Actions

and Reflection Generalizations

Amy B. Ellis
Department of Curriculum and Instruction

University of Wisconsin–Madison

This article presents a cohesive, empirically grounded categorization system differenti-
ating the types of generalizations students constructed when reasoning mathematically.
The generalization taxonomy developed out of an empirical study conducted during a
3-week teaching experiment and a series of individual interviews. Qualitative analysis
of data from teaching sessions with 7 seventh-graders and individual interviews with 7
eighth-graders resulted in a taxonomy that distinguishes between students’activity as
they generalize, or generalizing actions, and students’ final statements of generaliza-
tion, or reflection generalizations. The three major generalizing action categories that
emerged from analysis are (a) relating, in which one forms an association between two
or more problems or objects, (b) searching, in which one repeats an action to locate an
element of similarity, and (c) extending, in which one expands a pattern or relation into
a more general structure. Reflection generalizations took the form of identifications or
statements, definitions, and the influence of prior ideas or strategies. By locating gen-
eralization within the learner’s viewpoint, the taxonomy moves beyond casting it as an
activity at which students either fail or succeed to allow researchers to identify what
students see as general, and how they engage in the act of generalizing.

One of the primary aims of educational practice is to help students develop robust,
generalizable knowledge that will support their abilities to create generalizations
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in the classroom as well as transfer their knowledge to new settings and conditions.
Two major traditions that have addressed the generalization of learning are the
fields of generalization research in mathematics education and transfer research in
education, psychology, and cognitive science. While generalization research typi-
cally examines the creation of a mathematical rule or property (Carpenter &
Franke, 2001; English & Warren, 1995; Lee, 1996), transfer research has histori-
cally studied the application of knowledge learned in one situation to another situ-
ation (described by Singley & Anderson, 1989). Although these approaches might
appear different at first glance, this article identifies a number of connections be-
tween the conceptions, theoretical orientations, and methodologies common to
both research traditions.

The creation of categorization systems has been an important component of re-
search in both approaches to the generalization of learning. For example, transfer
researchers have created categorization schemes to explain experimental findings
demonstrating low incidences of transfer (Barnett & Ceci, 2002; Perkins &
Salomon, 1988). Classifying types of generalizations in mathematics education re-
search has led to a greater understanding of the different ways in which students
construct general rules to fit particular cases or data (Garcia-Cruz & Martinon,
1997; Lannin, 2003; Stacey, 1989). However, traditional research studies in both
fields tend to rely on expert models of performance, which could result in a failure
to capture instances that may constitute generalization from the learner’s perspec-
tive. Accordingly, many studies ultimately categorize tasks and correct mathemati-
cal strategies rather than learners’ evolving mental processes.

The purpose of this article is to create a taxonomy for generalization that ex-
tends previous work by: a) operating from a student-oriented perspective, b) mak-
ing connections between the transfer literature and generalization research in
mathematics education, and c) presenting a system developed from methods in-
formed by a reconceptualization of what it means to generalize. In doing so, the
generalization taxonomy represents a coherent, empirically grounded categoriza-
tion system that distinguishes processes and results of generalizing activity across
multiple interconnected dimensions. The connections identified in the taxonomy
offer a way to identify evolving levels of sophistication in generalizing activity.

THEORETICAL FRAMEWORK: RECONCEIVED MODELS
OF GENERALIZATION AND TRANSFER

One Problem in Two Research Traditions:
Reliance on the Observer’s Perspective

Classical transfer studies privilege the perspective of the observer because the re-
searcher predetermines what counts as transfer based on the correspondences that
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experts make between initial learning and transfer tasks (Lobato, 2006). As a re-
sult, transfer studies often reveal more information about the researcher’s con-
struction of similarity than the learner’s (Pea, 1989). Although transfer researchers
report an interest in examining the influence of prior learning experiences on at-
tempts to solve problems in new situations (Reed, Ernst, & Banerji, 1974), Lobato
(in press) claims that in practice, classical transfer experiments examine the forma-
tion of highly valued expert generalizations rather than the generalization of learn-
ing more broadly. In addition, the requirement that researchers find improved per-
formance between transfer tasks may prevent them from capturing instances in
which students construe situations as similar, but do not benefit from such con-
structions in terms of increased performance (Lobato, 2003). This could result in
traditional studies underreporting the generalization of learning.

A reliance on an observer’s perspective results in similar limitations with stud-
ies examining students’generalizations within the mathematics education commu-
nity. Generalization is viewed as not only the production of a correct mathematical
rule or principle, but also as the production of a rule that researchers predetermine
to be mathematically useful within a particular context (Orton & Orton, 1994;
Stacey & MacGregor, 1997). Although students may perceive a number of differ-
ent patterns and properties, their focus on those which researchers do not deem rel-
evant is not typically taken as an appropriate generalization. As a result, studies ex-
amining students’generalizations often report students’difficulties in recognizing,
using, and creating general statements (English & Warren, 1995; Kieran, 1992;
Lee, 1996; Stacey & MacGregor, 1997). Because work on generalization predeter-
mines what type of knowledge counts as general, it may fail to capture instances in
which students may perceive a common element across cases, extend an idea to in-
corporate a larger range of phenomena, or produce a general description of a phe-
nomenon, regardless of its correctness.

Classical Categorization Systems

The use of an observer’s perspective has influenced the nature of the categorization
systems that have been used to distinguish between different types of transfer from
a classical perspective and different types of generalization from the mathematics
education tradition. For instance, Gagné (1977) distinguished between lateral
transfer, the generalization of what is learned in one situation to a new situation at
roughly the same level of complexity, and vertical transfer, the learning of lower
level skills or knowledge as facilitating the acquisition of more complex skills or
knowledge. Another typical distinction is between near and far transfer (Detter-
man, 1993). Near transfer refers to cases in which the original learning situation
and new situation are quite similar; far transfer addresses cases in which the two
situations are quite different. Another major distinction of transfer types is that of
specific versus nonspecific or general transfer (Singley & Anderson, 1989). In
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specific transfer, the learner transfers domain specific content knowledge, whereas
in general transfer, the learner transfers principles or heuristics to new situations.
In each of these categorization systems, the observer’s perspective informs what
constitutes similar levels of complexity, similar situations, or domain-specific
knowledge.

Many parallels exist in generalization research in mathematics education: for
instance, Stacey (1989) describes the difference between near generalization, a de-
scription of a pattern allowing one to determine the next term in a sequence, and far
generalization, the construction of a general rule. Davydov (1990) and Krutetskii
(1976) differentiate between subsuming particular cases into a general concept
versus developing a general concept from a particular case. Other researchers have
gone further by elaborating multiple levels or strategies. For example, Garcia-Cruz
and Martinon (1997) developed a framework for three levels of generalization in
linear patterns. The levels distinguish between a student’s ability to recognize and
use the iterative nature of a pattern, establish an invariant from an action performed
on a pattern, and generalize a strategy to a new problem. Again, what constitutes
distinctions such as near or far rely on the researcher’s point of view. In addition,
by focusing on correct mathematical strategies, mental acts that cut across strate-
gies may be overlooked and generalizing processes that result in incomplete or in-
correct generalizations may be omitted.

Alternative Approaches to Transfer and Mathematical
Generalization: Adopting the Actor-Oriented Perspective

Transfer has been notoriously difficult to demonstrate in the laboratory (Detter-
man, 1993; Gruber, Law, Mandl, & Renkl, 1996), and mathematics education re-
search demonstrates similar difficulties in capturing generalization (English &
Warren, 1995; Lee, 1996; Stacey & MacGregor, 1997). This suggests one of two
possibilities: either concept understanding does not typically transcend the context
in which it is developed (Brown, Collins, & Duguid, 1989; Perkins & Salomon,
1989), or existing constructs fail to account for all of the ways in which students
might be generalizing their knowledge. Given that students’ and teachers’ every-
day experiences demonstrate instances of generalizing on a regular basis, turning
to a reconceptualization of transfer could inform work on generalization by
expanding the range of student acts that may actually constitute generalizing
phenomena.

In response to these limitations, researchers have proposed alternative ap-
proaches that characterize transfer more broadly (Beach, 1999; diSessa & Wagner,
2005; Greeno, 1997; Lobato, 2006; Marton, 2006). For instance, Lobato (2006)
describes transfer as the influence of learners’ prior activities on their activity in
novel situations, whereas Marton (2006) addresses transfer in terms of how learn-
ing in one situation affects or influences what the learner is capable of doing in an-
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other situation, even if the influence results in differential behavior. These alterna-
tive approaches characterize transfer as the generalization of learning; thus, they
capture a broader range of student actions as transfer, including students’ mathe-
matical generalizations.

Actor-Oriented Transfer

In an attempt to address the limitations of observer-oriented transfer research,
Lobato (2003, in press-a) developed a framework for transfer called the actor-ori-
ented transfer perspective, in which the researcher shifts from an observer’s (or ex-
pert’s) viewpoint to an actor’s (learner’s) viewpoint. From this perspective, trans-
fer is the generalization of learning, which can be seen as the influence of a
learner’s prior activities on his or her activity in novel situations. The actor-ori-
ented perspective seeks to understand the processes by which people connect
learning experiences with new situations. This connection-making between situa-
tions most predominately involves the process of similarity-making, but it can also
involve the processes of discerning differences and modifying situations (Lobato,
Clarke, & Ellis, 2005; Lobato & Siebert, 2002). The actor-oriented framework al-
lows the researcher to identify what is salient for students. Attending to students’
perceptions of similarity, regardless of their correctness, can then enable the identi-
fication of supports for specific types of generalizations.

Connections Between Actor-Oriented Transfer
and Generalization

From the actor-oriented perspective, one can identify a number of similarities
between processes of transfer and processes of generalization. Mathematics edu-
cation researchers have described generalization in three broad ways: (a) the devel-
opment of a rule that serves as a statement about relations or properties (Carpenter
& Franke, 2001; English & Warren, 1995; Lee, 1996), (b) the extension or expan-
sion of one’s range of reasoning beyond the case or cases considered (Dubinsky,
1991; Harel & Tall, 1991), and (c) the identification of commonalities across cases
(Dreyfus, 1991; Kaput, 1999). These characterizations mirror Lobato’s recon-
ceived view on several fronts. For instance, the development of a rule and the ex-
pansion of one’s range of reasoning are both forms of the generalization of learn-
ing, whereas the identification of commonalities can be seen as the process of
similarity making. The fact that these types of generalizing actions could be cap-
tured under the umbrella of the transfer phenomenon suggests that we should look
to reconceptions of transfer in an attempt to address some of the limitations of pre-
vious research on mathematical generalization.

Moreover, there is a subset of research on generalization in mathematics educa-
tion which could be interpreted as consistent with reconceived views of transfer,
particularly the actor-oriented transfer perspective. For instance, Harel and Tall
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(1991) distinguished between expansive generalization, in which one extends his
or her scheme without changing it, and reconstructive generalization, in which a
scheme undergoes reorganization. Viewed through the actor-oriented transfer lens,
one could study students’ scheme expansions and reconstructions without being
restricted by normative notions of correctness. Similarly, Piaget’s distinction
between inductive and constructive generalization is compatible with the ac-
tor-oriented view (Piaget & Henriques, 1978). Inductive generalization represents
the extension of the field of application of an existing mental structure, whereas
constructive generalization involves the generation of new structures and contents.
Viewed through the actor-oriented lens, one could study students’ scheme genera-
tions and extensions without first having to determine what constitutes appropriate
general knowledge.

However, a limitation of the actor-oriented transfer perspective is that it does
not distinguish between types of generalization, instead capturing a wide range of
generalizing acts as forms of transfer. Thus, a categorization scheme of types of ac-
tor-oriented transfer is needed. The types of generalization identified within the
mathematics education literature that are consistent with an actor-oriented ap-
proach are promising to use as a starting point, but they fall short of presenting a
coherent model that would distinguish multiple dimensions of generalization and
articulate relations among types of generalizations. One of the aims of this article
is to connect to the reconceived transfer literature to inform work on generalization
in mathematics education. By taking a broader notion of what it means to general-
ize, this study captures a wide range of student actions as they attempt to produce
generalizations about linear functions. These actions are presented in the form of a
comprehensive, empirically grounded taxonomy, which describes multiple inter-
related types of generalizing.

A Shift in Methods

The data collection methods that informed the generalization taxonomy differed
from those typically employed in either classical transfer experiments or general-
ization studies in mathematics education. In particular, transfer studies typically
present students with a learning situation followed by a transfer task. The transfer
task is determined to be both separate and distinct from the learning situation, par-
ticularly in terms of surface features, but still sharing some structural features in
common. What constitutes a surface feature versus a structural feature, or what
counts as similar or different situations are determined by the researchers; stu-
dents’ views on these similarities or differences do not inform the design of classi-
cal studies. Similarly, many generalization studies in mathematics education rely
on individual tasks designed and presented by the researcher. The way in which a
student is expected to generalize has already been determined, and the phenome-
non being measured is the student’s ability to produce a correct and relevant pat-
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tern or general statement. If a student is incapable of producing the expected gener-
alization on the given individual task, then the study may report students’ failure to
generalize.

These methods may fail to capture genuine instances of generalization and
transfer not only because the researcher’s narrow definition limits the phenomenon
in question, but also because generalization and transfer may occur over longer pe-
riods of time, in ways that are not easily demonstrated in traditional task protocols:

In the classroom environments in which we now conduct research, an attempt to
build theory, a straightforward extension of the laboratory protocol is close to impos-
sible. Such neat slices of life – problem a followed immediately by problem b – are
not that often apparent…The understandings that lead to transfer are typically built
over extended periods and learners may show evidence of transfer in a variety of
ways and in somewhat unpredictable times. This allows a richer picture of emerging
competence, but poses methodological problems of no small proportions. (Cam-
pione, Shapiro, & Brown, 1995, p. 39)

The messy nature of learning in classroom settings requires a new approach to
studying transfer phenomena. A shift in methodological approach away from the
use of discrete tasks may be necessary to capture a wider range of student actions
that still legitimately constitute cases of generalization and transfer.

A Student-Centered Generalization Taxonomy

The taxonomy described in this article extends Lobato’s actor-oriented transfer
perspective to account for the different types of generalizations students create. In-
stances of generalization are sought by looking for evidence of students identify-
ing commonality across cases, extending their reasoning beyond the range in
which it originated, and deriving broad results from particular cases. Operating
from the actor-oriented perspective provides an opportunity to attend to the ways
in which learners generate similarities between problems, situations, or contexts.
Evidence for generalization is therefore not predetermined, but instead is found by
(a) exploring how students extend their reasoning, (b) examining the sense stu-
dents make about their own general statements, and (c) inquiring into what types of
common features students might perceive across cases.

Adopting an actor-oriented perspective requires the researcher to relinquish
normative notions of what counts as generalization and instead attempt to take
on the student’s mathematical perspective. Although mathematical correctness
should not be ignored or de-emphasized, limiting the definition of generalization
to that of a correct, formal description supports fewer insights into what students
themselves construe as general. By better understanding how students generalize
their learning experiences, researchers may be able to identify increasing levels of
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sophistication in generalizing activity and consequently better support students’
development of expertise. Furthermore, capturing how students expand the range
of applicability of a general phenomenon can lead to insight about what students
have learned about that phenomenon.

The taxonomy that emerged from this study is described in two major results
sections. The first section elaborates the system itself, providing descriptions and
examples of each of the types of generalizations demonstrated by the study partici-
pants. The second section illustrates the power of the taxonomy by elaborating the
nature of the evolution of students’ abilities to generalize productively. A data epi-
sode demonstrating iterative cycles of generalization is included to provide a back-
drop against which one can use the taxonomy to examine students’ emerging gen-
eral ideas. The article closes with a discussion of other potential contributions of
the taxonomy, both for research on transfer and for generalization in mathematics
education.

METHOD

Two sets of data were collected to gain information regarding the nature of stu-
dents’ generalization in multiple settings. First, a small number of students partici-
pated in a teaching experiment to examine their generalizing activity in a nonre-
strictive environment. Second, a different group of students participated in a series
of interviews to explore their generalizing activity in a typical mathematics class at
the same school. Both components of the study were conducted at a public middle
school located near a large southwestern city. The school has an ethnically diverse
student population—out of its 1,000 students, approximately 40.8% are Latino,
28.2% are White, 16.7% are Filipino, 6.9% are African American, 6.3% are Asian
American, 0.7% are Pacific Islander, and 0.4% are Native American. Approxi-
mately 15% of the students are English language learners.

Participants

Seven 7th-grade pre-algebra students were selected to participate in the teaching
experiment. The students were recruited, with their teacher’s input, on the basis of
strong interest in participating in supplemental mathematics lessons, good regular
classroom attendance, ability to verbalize their thought processes, and grades of C
or higher in their school mathematics classes. A sample of students who displayed
medium to high grades, good classroom attendance, and the ability to articulate
their thoughts was necessary for the success of the teaching experiment because it
was important to include students who were poised to develop new ideas and who
could describe their thought processes. Only 7 students from the recruitment pool
of 70 volunteered for the course, and every student who volunteered was accepted.
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Six students were girls and 1 was a boy. Three students were Latino, 3 were White,
and 1 was Asian American. One student was an English language learner and the
other 6 were native English speakers. All 7 students were relatively strong propor-
tional reasoners as evidenced by their ability to successfully negotiate a series of
proportional reasoning tasks prior to the study. The participants’ facility with pro-
portional reasoning likely helped them develop and generalize new ideas about lin-
ear functions throughout the course of the teaching experiment.

An additional 7 students were recruited from an eighth-grade algebra class (n =
35) to participate in individual interviews. The interview participants were re-
cruited on the basis of the same criteria used for the teaching experiment. The se-
lected students reflected the makeup of the general student population in terms of
gender and ethnicity; 3 of the students were boys and 4 were girls. Four of the stu-
dents were Latino, 2 were White, and 1 was Asian American. Two of the students
were English language learners, and 5 were native English speakers. Each student
participated in one interview. Gender-preserving pseudonyms have been used for
all participants.

Data Collection and Instruments

All teaching-experiment sessions were taught by the author, who is referred to as
the teacher/researcher throughout the rest of the article. All sessions were video-
taped and transcribed. The primary purpose of a teaching experiment is for re-
searchers to gain direct experience with students’ mathematical reasoning, learn-
ing, and development (Cobb & Steffe, 1983). The teaching experiment setting
allows researchers to construct models of students’ mathematics through the cre-
ation and testing of hypotheses in real time while engaging in teaching actions.
Through this approach, it is possible to continually develop, test, and refine conjec-
tures about students’ generalizations as they solve problems.

The teaching experiment occurred on 15 consecutive school days for 1.5 hr
each day. A single camera was placed in the room and run by an observer who was
familiar with teaching-experiment methodology in general and the goals of this
project in particular. The observer recorded whole-class discussions as well as in-
dividual and group work, and he also took detailed field notes. To gain more access
into each individual student’s understanding, 30-min informal discussions oc-
curred with 1 student at the end of each lesson, resulting in a total of two discus-
sions with each student.

The main purpose of the teaching experiment was to explore the nature and de-
velopment of students’ generalizations as they emerged in the context of realistic
problems about linear growth. The learning goals included the development of ra-
tios, the creation of an emergent quantity as the ratio of two initial quantities, and
the identification of linear situations as those that have constant ratios. The stu-
dents worked with gear ratios for the first 7 days of the teaching experiment and a
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speed context for the remaining 8 days. Two physical artifacts ultimately proved
important in influencing how the students reasoned. The first was a set of physical
gears that the students could directly manipulate to experiment with ways of coor-
dinating rotations. The second artifact was a computer program called SimCalc
Mathworlds (Roschelle & Kaput,1996), which simulated speed scenarios showing
two characters walking across the screen at constant speeds. The use of the soft-
ware allowed the students to create and test conjectures about how changing dis-
tance and time would affect the character’s speed.

Figure 1 provides an overview of the activities students engaged in, and the
mathematical ideas addressed as they were explored in the classroom during the
observed unit.

The individual interviews lasted 60 min and were videotaped and transcribed.
The goal of the semistructured interviews (Bernard, 1988) was to determine what
sense the students made of the generalizations they developed, what types of ex-
planations students provided for them, and what types of extensions and limita-
tions students saw for their own generalizations. Thus, the model for the interviews
involved taking some of the general statements students had developed in class and
devising task questions addressing them. Transcription of the interviews as well as
the teaching-experiment sessions captured not only the students’ utterances, but
also their written explanations, drawings, and gestures. Descriptions of students’
gestures or drawings as they interacted with physical artifacts and representations
served as an additional source of information about students’ reasoning as they
generalized.

The interview sessions occurred during a 10-day unit on linear functions, in
which the classroom teacher relied on the use of several activities from the Con-
nected Mathematics Project (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998).
Connected Mathematics Project is a problem-centered curriculum in which math-
ematical ideas are embedded in realistic and engaging problems designed to help
students develop both understanding and skill. The official text for the course was
a more traditional Algebra I book (Larson, Boswell, Kanold, & Stiff, 2001), on
which the classroom teacher occasionally relied for practice problems and home-
work. Based on the student’s work, the tasks and the interviewer’s questions were
varied, but each task required the student to extend his or her reasoning to a larger
set of cases or numbers. Figure 2 includes sample interview items posed to
students.

Data Analysis

Analysis of the data followed the interpretive techniques of grounded theory, in
which categories of generalizations were induced from the data (Glaser & Strauss,
1967; Strauss & Corbin, 1990). Because the teaching experiment occurred 4
months prior to the individual interviews, transcripts of the teaching-experiment
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FIGURE 1 Overview of the teaching experiment unit.



data were coded first. The initial coding pass relied on open coding, in which in-
stances of generalization were identified as they fit the definition described earlier
(the identification of commonality across cases, the extension of reasoning beyond
the range in which it originated, & the derivation of broad results from particular
cases). Classroom sessions data were first analyzed chronologically day-by-day,
for the purpose of finding evidence to determine (a) the apparent meaning of the
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identified generalization to the student, (b) the basis for each generalization, and
(c) the range of extension of each generalization. Through this process, emergent
categories of generalizations were developed.

Data from the teaching experiment were then re-analyzed student by student.
Sources of the different types of generalizations were sought by identifying the ac-
tions in which the students had engaged to formulate each generalization. Catego-
ries were further tested, and appropriate modifications were made through coding
the individual interview data. When categories of types of generalizations devel-
oped from the teaching-experiment data did not fit with individual interview data,
new categories emerged. These new categories were then subjected to subsequent
passes through both the teaching-experiment data set and the interview data set un-
til theoretical saturation had been achieved. All generalizations detected in both
the teaching experiment and the individual interviews were ultimately recoded
with the final categorization scheme.

Each category emerged from analyzing multiple pieces of evidence across
groups, students, and tasks. The following data excerpts presented, however, are
those that provide the clearest examples of the phenomena in question. For brev-
ity’s sake, only one or two excerpts are included, which do not encompass the
range of data analyzed to develop the category.

RESULTS

The goal of the study was to develop a coherent, empirically grounded taxonomy
capturing a broad range of generalizing actions and reflection generalizations. Al-
though the taxonomy is the result of students working with many different problem
tasks, it is not a categorization of task types. Instead, it captures students’ general-
izing acts as they reason with a range of problems. The results are reported in two
major sections. The first section introduces the Generalization Taxonomy, provid-
ing definitions, descriptions, and examples of each category of generalization
demonstrated by the study participants. The second section presents a data episode
that demonstrates iterative cycles of generalizing as viewed through the lens of the
taxonomy.

Part 1: The Two-Part Generalization Taxonomy

The more than 300 generalizations coded fell into one of two major categories,
generalizing actions and reflection generalizations. Generalizing actions describe
learners’ mental acts as inferred through the person’s activity and talk. An exami-
nation of problem-solving behavior, such as the mathematical operations a student
employs while working with a problem, a student’s apparent mathematical focus,
the properties and relations a student attends to, or the strategies in which a student
engages, can lead to a description of the types of mental actions the student appears
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to employ in his or her attempts to generalize. The behaviors themselves do not
constitute the generalizing actions, but contribute to the researcher’s determination
of what type of generalizing action the student may be performing.

The notion of a mental action is a researcher’s construct. From a Piagetian per-
spective, knowledge arises from a learner’s activity, either physical or mental; it is
goal-directed activity that gives knowledge its organization (von Glasersfeld,
1995). Mental action is distinguished from physical action, but the term action is
also deliberate – it emphasizes the belief that learners are nonpassive, adaptive be-
ings who construct knowledge through interaction with their experiential worlds.
The inferred mental acts are characterized as generalizing actions in part to distin-
guish them from the verbal or written expressions that comprise students’ reflec-
tion generalizations. However, it will not be possible to identify with certainty ev-
ery mental process in which a student engages. The notion of generalizing action is
only one way of making sense of an underlying process that could result in particu-
lar behaviors.

Students’ public statements were categorized as reflection generalizations. If a
student explicitly stated a common property, pattern, or relation of similarity, the
statement was recorded as a reflection generalization. Instances in which a student
did not produce a verbal or written statement but used the result of a generalization,
such as applying an idea from a prior situation to a new problem, were also catego-
rized as reflection generalizations. In both cases, behaviors or statements coded as
reflection generalizations represent the student’s ability to either identify or use a
generalization he or she has created.

When students made a statement of generalization, it was often possible to
trace their reasoning back to the point at which they began to engage in the types
of generalizing actions that led to their final statement. By attending to the dif-
ference between students’ generalizing actions and reflection generalizations, it
was possible to identify which actions were most often connected to particular
types of general statements. Categorizing actions and reflections separately also
allowed for the identification of iterative “action → reflection → action → re-
flection” cycles of reasoning, in which students’ generalizations evolved in so-
phistication over time.

The two major categories of generalizing actions and reflection generalizations
are described in turn. Each category contains multiple subcategories, in which dif-
ferent types of generalizations are presented and explained through data excerpts
from both the teaching experiment and the individual interviews.

Generalizing Actions

Students’ generalizing actions fell into three major categories: relating, search-
ing, and extending. Figure 3 provides an overview of the three categories.
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By distinguishing between these three actions, the taxonomy accounts for
differences in mental activities as students generalize. The three categories
are not mutually exclusive; students’ actions were instead classified as falling
into a particular category based on their primary focus when reasoning. Each
category and its subcategories are defined and described in more detail
following.

Type 1: Relating

Relating occurs when a student creates a relation or makes a connection be-
tween two (or more) situations, problems, ideas, or objects. A student may see a
situation and make a connection to a prior situation seen before, or may see a situa-
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tion and then generate another situation that he or she views as similar to the first.
In either case, when a student engages in relating, he or she perceives a relation of
similarity between two or more situations, but might not necessarily be able to
elaborate how the situations are connected. Students who engaged in relating made
connections between situations and connections between objects.

Relating situations. The act of relating situations involves the formation of
an association between two or more problems or situations. According to the ac-
tor-oriented perspective, what constitutes a “situation” is dependent on the stu-
dent’s perception; it can refer to the context surrounding a problem, the combina-
tion of circumstances at a given moment, or the setting in which one engages in a
particular type of reasoning. Therefore, if a student perceives two situations to be
distinct, and then establishes a relation of similarity between them, he or she is re-
lating situations even if the contexts are identical from a researcher’s perspective.
For example, students in the teaching experiment worked with the following prob-
lem: “Gear A has 5 teeth and Gear B has 8 teeth. Gear A starts spinning on its own,
before it’s connected to Gear B. It spins 6 times. Then Gear B is plopped down and
they spin together.” Larissa remarked:

Larissa: Oh! That’s like, that’s like the test, the swimming laps lady!
Timothy: Yeah, yeah!

Larissa: Then he jumps in 5 minutes later and …
Timothy: We did this test where, oh this person jumps in and does a certain

amount of laps and then 5 minutes later…and then doing a rate of this,
and 5 minutes later, this guy jumps in doing this rate.

Larissa and Timothy seemed to view the gear problem, in which one gear began
to spin before the other joined it, as similar to a problem they had seen before in
which one person began to swim at a particular rate, and was later joined by an-
other swimmer, swimming at a different rate. Because the students made a connec-
tion to a previously encountered problem, their actions are coded as connecting
back, even though there are important mathematical differences between the two
scenarios. Students may also connect back when noticing a property in a current
situation that reminds them of a similar property from a prior situation, or when fo-
cusing on a feature of a problem that they perceive as similar to a feature from an-
other problem.

Dani, a teaching-experiment student, also generalized by relating situations,
but did so in a different manner. She worked with the following table (Figure 4)
to determine if data would be linear or nonlinear. The table showed how far a
clown walked during the associated amount of time for different portions of his
journey:

Dani decided that the clown was not walking the same speed, and the teacher/
researcher (TR) asked her to explain her thinking:
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Dani: The more seconds he has, he slows down. Let’s see. The more seconds he
has, he’ll slow down. And the less seconds he has, he’ll speed up faster.

TR: Does that mean that it’s linear or nonlinear?
Dani: It really means it wasn’t linear.

TR: Okay, and how come?
Dani: You know how, like if you had less time to go into the grocery store to get

the foods on the grocery list, you would go faster if you had like 1 s to do it
in. You would like be in and out real quick. Same thing here. 12 s you
would take, like, not as much time to get all the groceries. You would like
slow down your walk a little to get there.

In an attempt to explain why she thought the data were not linear, Dani invented
what she viewed as an analogous situation in which one would move through a
grocery store either quickly or slowly depending on the amount of time available.
Given Dani’s description, she appeared to take two pairs from the table, (12 cm, 1
s) and (1 cm, 12 s) and then describe each through the grocery-store scenario. Be-
cause Dani only mentioned time, it is difficult to tell whether she held distance
constant or also varied distance. Although this may not constitute a valid analogy
to a researcher, Dani apparently perceived a similarity between the table and her in-
vented scenario, and thus her actions are coded as creating new rather than con-
necting back. Unlike the students’ actions in the gears and swimming example,
Dani deliberately invented a new situation to achieve the specific goal of justifying
her conclusion that the data were not linear.

Relating objects. Two teaching-experiment students, Larissa and Julie, shared
equations theycreated todescribe the journeyofacharacterwhowalkedataconstant
speed after starting 6 cm away from home. Larissa wrote “10[(c – 6) ÷ 12] = s” and

Julie wrote “
(# )of cm away from home !"

#

$

$

%

&
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6
12

10 = how long it took him.” The stu-

dents remarked that the two equations shared a connection:

Larissa: They’re both generalizing.
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Timothy: They’re both the same thing though. They’re both similar, but just done
in a different form.

TR: What did you mean when you said they’re both generalizing?
Larissa: They’re both telling you how you can solve the equation even though

they’re different.

In their attempt to describe the property embodied by both sets of equations, the
students focused on a similar property, namely, that both equations determined
missing values. These students’ actions are coded as relating objects, because they
formed an association between two or more present mathematical objects, such as
equations, graphs, tables, or other representations. In contrast to the prior category
of relating situations, students relating objects do not consider the two objects in
question to be associated with different contexts or situations. One might notice
that an equation has the same structure as a different equation, or that two graphs
share a similar feature. Timothy and Larissa related objects by focusing on a prop-
erty similar to both equations.

One may also relate objects by focusing on the syntactic form taken by two or

more expressions. For example, Larissa wrote
1

4 3
5

C

S
( on the board whereas

Dora wrote S C(
5

12
. Larissa then remarked that the equations shared a similar-

ity: “Those are both divided.” She focused on the form of both equations, notic-
ing that both contained division, and related the two as similar based on their
form.

Type 2: Searching

When searching, a student will perform the same repeated action in an attempt
to determine if an element of similarity will emerge. Teaching-experiment students
worked with the following table (see Figure 5) to see if the clown walked at a con-
stant speed or a variable speed:

Timothy divided centimeters by seconds for each pair. He took 7 and 1/2 and di-
vided it by 5, took 27 and divided it by 18, and repeated this same action for each
pair in the table. He concluded “They all have the same relationship between the
seconds and the centimeters.” When asked what the relationship was, he said “ei-
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ther if you look at it centimeters to seconds, the centimeters are 1 and 1/2 of the
seconds, or the seconds are 2/3 of the centimeters.”

In contrast to the students’ relating actions discussed previously, Timothy’s
searching actions were deliberate and goal-oriented. He focused on a mathemati-
cal relationship between two objects, and thus his actions were coded as searching
for the same relationship. When searching, a student will perform the same action,
such as calculating a ratio, on (usually) multiple pairs of numbers. Through this re-
peated action, the student seeks to find an element of similarity. The student’s goal
is therefore to locate this element of sameness. He or she may not know if any rela-
tion of similarity exists, or what it might be, but by searching the student antici-
pates that he or she may find one. Thus with searching actions, students do not aim
to create a relation of similarity so much as they aim to find what they anticipate as
a preexisting element of sameness across multiple instances.

As shown in the aforementioned excerpt, searching actions occurred most often
when students worked with tables containing many pairs of numbers. They would
frequently look for an element of sameness across all of the pairs in a given table. A
student’s focus on sameness can include anything that he or she views as the same,
even if it may be mathematically trivial from the researcher’s perspective. In addi-
tion to focusing on relationships, students also focused on procedures, patterns,
and solutions when searching.

Same procedure. As Dani worked with a table (see Figure 6) representing
the clown’s total distance from home and his time walking, she engaged in actions
that, on the surface, appeared similar to Timothy’s actions:

Dani: Oh yeah, I was finding the gaps between all the numbers, like negative 5 and
20 and 2 and 12 and so on. For both sides. And when I got both I divided 25 by
10 and 20 by 8 and 12.5 by 5 and 87.5 by 35 and it all gave me 2.5.

Although Dani’s actions were calculationally sophisticated, the procedure she
described appeared to lack a connection to any speed relation. Specifically, Dani
was not able to indicate what the differences that she had calculated represented,
and she could only justify her procedure by explaining that it must be right “be-
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cause that’s what Larissa did yesterday.” Dani’s actions were therefore coded as
searching for the same procedure rather than searching for the same relationship.

It can be difficult for the researcher to distinguish between the search for a rela-
tionship versus a procedure. One could argue that Timothy performed a procedure
by dividing the centimeters by the seconds throughout the table. However, Timo-
thy’s arithmetic calculations appeared to be tied to his quantitative comprehension
of the situation (Thompson, 1994), as indicated in part by Timothy’s subsequent
discussion of the centimeters–seconds relationship in terms of the character’s
speed. In contrast, Dani’s actions did not appear to be connected to reasoning about
a relationship between quantities. Thus, the distinction between the search for the
same relationship versus the search for the same procedure rests with the re-
searcher’s judgment of the student’s understanding of the subject matter.

Same pattern. When a student focuses on the same pattern, he or she might
notice a pattern and then search to determine if it remains stable. For example,
Mario, an interview participant, focused on a pattern in a table introduced by his
classroom teacher in class (see Figure 7):

Tracing his finger down the y-column, Mario noticed regularity in the differ-
ences between successive values: “on the x side it’s going up by ones and on the
other side it’s going up by…sevens.” Mario’s action of attending to the differences
down the column revealed a stable pattern in the data. However, his language did
not indicate attention to the relation between the increase in the x-values and the
corresponding increase in the y-values. Because Mario did not attend to how the
values in the table were coordinated, the simple numerical pattern he identified did
not represent a search for the same relation. His focus was on the pattern only.

Same solution or result. The interview participants worked with the equa-
tion 2(4b – 3) = 8b – 6 with their classroom teacher:
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Mrs. D: I heard something over here about b equals b. And that may have raised
the question. You find that it is one other solution. Pick another number.
This side of the room, you pick a positive value between 1 and 5. Okay,
you folks (gesturing to the other side) pick a negative value between
negative 1 and negative 5. And you folks (gesturing to the students in the
middle) positive value between 1 and 5. Substitute it into the sentence.
Okay? If the value you choose is a solution, what will be true?

Students: Equal.
Mrs. D: What will be true of both sides of the equation? They’ll be what? The

same, they’ll be equal. That’s what an equation is all about.

The classroom teacher then asked various students in the class to share their work
given that they had picked arbitrary numbers from negative 5 to 5 to substitute for
b. Each student reported that his or her value resulted in a true statement. The stu-
dents noticed that in every case, the statement was true. One student, Aditi, re-
marked to her neighbor, “I think every number is going to work.”

Mrs. D: Okay, what does that hint to you? How many solutions might there be?
Students: Infinity.

Mrs. D: Negative 6 was a solution, but there might be infinitely many others.

As a group, the students engaged in a repeated action by substituting various ar-
bitrary values into the equation. Each time they found the same result, and with
their classroom teacher’s prompting, they generalized that any value could result in
a true statement. The students’ focus remained on the outcome of their actions, and
they made inferences based on determining the same outcome repeatedly. When
students engage in searching for sameness via the same procedure, relationship, or
pattern, their focus centers on their own repeated actions more than on the outcome
of those actions. In contrast, when students search for the same solution, they focus
on the result of their actions.

Type 3: Extending

Generalizing activity falls into the extending category if a student not only no-
tices a pattern or a relationship of similarity, but then expands that pattern or rela-
tionship into a more general structure. When extending, a student expands his or
her reasoning so that it reaches beyond the problem, situation, or case in which it
originated. Through this action the student generates something new, such as a new
domain of validity, new members of a class, a new relationship, a new structure, or
a new description of a general phenomenon.

For example, Timothy graphed a linear speed situation in the first quadrant and
shared his results with fellow students. Larissa, on observing the graph, remarked
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“Going back to the how many points can you…in fact, it could also go to a four
quad graph.” Her comment referred to the idea that Timothy did not need to restrict
his line to the first quadrant, but could extend it beyond the few points he had origi-
nally graphed. In noting that the graphical representation could be applied to a
larger range of cases shown, Larissa extended her reasoning by expanding the
range of applicability.

Notice that in the relating category, students sometimes create new situations. If
a student focuses on the generality of an idea in a way that extends beyond any one
or few particular instances, problems, or situations, then his or her actions would
be categorized as extending. If, however, a student’s attention is focused primarily
on the formation of an association between two situations, then his or her general-
izing action is categorized as relating. This is an example of the nonexclusivity of
the three categories; student’s actions were categorized based on the main focus of
their reasoning. Data from the study revealed that in addition to expanding the
range of applicability, students also extended by removing particulars, operating,
and continuing.

Removing particulars. Students who extend by removing particulars take
what they have generalized within a particular problem and then remove some con-
textual details from their description of a property, relationship, pattern, or other
phenomenon to state a global case. One could also go on to then describe a class of
particular objects and a general phenomenon that would be true for each object in
the class. For example, students in the teaching experiment worked with a situation
in which a clown walked 12 cm in 10 s. Dora wrote a table on the board in which
the centimeters increased by 1 and the seconds increased by 5/6. Julie then wrote a
table in which the seconds increased by 1 and the centimeters increased by 6/5.
Timothy remarked:

Timothy: If you’re going up by 1 in seconds, it’s going up by 6/5. If you’re going
up by 1 in centimeters, it’s going up by 5/6, or the inverse.

Timothy then thought for a time about this idea and extended his reasoning be-
yond the particular speed situation:

Timothy: Whatever 1 you go up by, and you go up by something else on the other
one, if you were to switch it around and go up by 1 on the other one, you
would go up by the inverse.

TR: For any table?
Timothy: I’m guessing it may. I’m not sure.

Timothy’s thought process was categorized as extending because he reasoned
about how linear tables could be organized in a way that was no longer tied to the
particular example in which the clown’s speed was 6/5 cm per second.
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Operating. A student extends by operating when he or she performs an oper-
ation on a relationship or a pattern to develop new instances of a phenomenon. Stu-
dents’ actions were only categorized as extending by operating if the operation in
question changed the relation, pattern, or representation. For example, one could
take a ratio and multiply it by any real number to generate many instances of equiva-
lent ratios. By multiplying a given ratio a:b by a constant c, one has altered the repre-
sentation of the existing ratio and expressed it as ca:cb. One could also engage in a
subset of this action, such as doubling or halving a composite unit (Lamon, 1995).
When extending by operating, a student deliberately applies a mathematical opera-
tion to an object to generate new cases.

Manuel, an interview participant, extended by operating when he worked
with the following table (see Figure 8) representing the relationship between the
layers of paper constituting a bridge and the number of weights a bridge could
hold:

When asked if fractions could work in the table, Manuel said yes, it would be
possible to write 8 and 1/2. The interviewer then asked:

Int: So what if we had 8 and 1/2 for x? Would it be possible to figure out
what y was?

Manuel: Hmm. 64. I think it’s 64.
Int: Why is that?

Manuel: Because I figured that half of 7, it’s 3 and 1/2. So when I added the 7 I
added an extra, an extra 3.5.

Int: So you added 3.5 to what?
Manuel: Oh hold on. 64 and 1/2.

Int: So why does that work?
Manuel: Because when you, because this is a half right there, so then I took a half

from 7, and when I, when I added the 7, I added an extra 3.
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Manuel formed a 1:7 unit by coordinating the differences between x and y values in
the table, operated on the 1:7 unit by halving 1 and halving 7, then adding .5 and
3.5 to get 8.5 and 64.5. He has formed a broader set of equivalent ratios by operat-
ing on the 1:7 unit.

Continuing. Anotherinterviewparticipant,Mario,detectedapatterninFigure9:

Mario: Um, well, as x goes up by 1, it’s…hmm. I don’t know, it goes, see it goes
1, 2, so there’s 1 in between that, and then there’s 2, and then there’s 3,
and then there’s 4 so they’re, the intervals are the, the same, like
it…Well they’re, they’re not the same but there’s like a pattern of how
they go up.

Int: Hmm.
Mario: It’s not the same number in between them but, um, the pattern like is the

same going up…if you did 6 it’d go to 16, so it’s plus 5. Then you go to 7
it’d be, it’d be like 22. So, um, there is a pattern on how y goes up and
how x goes up.

Mariocontinuedthepatternof increasesof1ineachinterval,andwasable toextend
this to generate the new pairs (6, 16) and (7, 22). He focused on the pattern in the table
rather than on a relationship between x and y, which he could not discern. Unlike
Manuel, Mario did not operate on the pattern as he continued it. Students extend by
continuing when they repeat a pattern without changing it. A student’s focus when ex-
tending by continuing is slightly different from his or her focus when extending by op-
erating. When operating, a student’s focus rests with the ratio or other relationship,
suchasManuel’s focuson the1:7unit shownpreviously.Whencontinuing,astudent’s
focus rests with the pattern itself rather than the relation that causes the pattern.

Reflection Generalizations

Recall that reflection generalizations are students’ final statements of general-
ization; they represent either a verbal statement, a written statement, or the use of
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the result of a generalization. Reflection generalizations are thus tightly linked
with students’ generalizing actions. Figure 10 shows the three major categories of
reflection generalizations that emerged from the data analysis.

The data excerpts will demonstrate that many reflection generalizations mirror
generalizing actions. For example, statements of sameness often accompany the
generalizing action of relating, and statements of general principles often accom-
pany the generalizing action of searching. The actions of noticing similarity, gen-
erating analogous situations, or searching for similarity frequently result in decla-
rations of sameness or articulations of rules and principles. Each of the three
categories, Identification or Statement, Definition, and Influence, is described in
detail in the sections following.

Identifications or Statements

When a student identifies a generalization, he or she may refer to a general pat-
tern, property, rule, or strategy, or he or she may explicitly identify a common ele-
ment across different cases or problems. Students who produce identifications or
statements make their generalizations public, either verbally or in written form, as
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a description or a mathematical statement. One may identify a continuing phenom-
enon, an element of sameness, or a general principle.

Continuing phenomenon. When students made statements of continuing
phenomena, they typically identified properties that extended beyond a specific in-
stance. Such statements were characterized by a sense of continuation, motion, or
dynamic relation between quantities. Study participants produced statements such
as “it keeps going,” “it always happens no matter what,” or “for every a, you see b.”
For example, Larissa worked with the table shown in Figure 11 to determine if a
character walked a constant speed:

After having engaged in the generalizing action of searching for the same relation,
Larissa concluded, “Every time it goes up 1, it goes up by 1 and 3/5.” Her attention re-
mainedfocusedonthestablepatternthatcontinuedacrossaseriesofregular iterations.

Sameness. Students who produced statements about sameness explicitly
identified a property that they perceived as linking two or more problems, situa-
tions, or objects. At times, students focused on the property that they perceived as
similar. Other times, students focused on the actual objects, representations, prob-
lems, or situations that they perceived as the same. Based on the student’s primary
focus as evidenced by his or her description, reflection generalizations were cate-
gorized either as (a) identification of a common property, (b) identification of same
objects or representations, or (c) identification of same situations.

For example, Carla, an interview participant, worked with the following table
(Figure 12) to determine if there was a relation between x and y:

Carla engaged in the generalizing action of searching for the same relationship
by dividing y by x for each ordered pair. She was then able to state what each pair
held the same: “Each one, x, is a third of y.” Her identification of the common prop-
erty across all pairs was the reflection generalization that followed her generaliz-
ing action of searching for the same relation.

In contrast, recall the example in which Larissa and Julie wrote their respective

equations on the board: “10[(c – 6) ÷ 12] = s” and “
(# )of cm away from home !"
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10 = how long it took him”. Timothy’s remark that “They’re both the same thing
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though. They’re both similar, but just done in a different form” represents the identi-
fication of same objects or representations. He engaged in the generalizing action of
relating objects to reach his conclusion; Timothy’s actual statement was the reflec-
tion generalization.

An identification of same situations occurred in the first example in this article
in which Timothy and Larissa recalled that the gear problem was like the swim-
ming problem. When Larissa noted, “that’s like the test, the swimming laps lady”
she identified the swimming situation as similar to the gears situation. Her general-
izing action that prompted the statement was relating (connecting back), and the
result of her action was the reflection generalization, the statement in which she
explicitly identified the two problems as similar.

General principles. Study participants identified general rules, patterns,
strategies, and global rules. When these statements occurred in algebraic form,
they represented the type of generalization that many researchers seek and recog-
nize as valid. Students in the study, however, produced reflection generalizations
about general principles in several different forms. These statements fell into four
major categories: (a) general rules, (b) patterns, (c) strategies or procedures, and
(d) global rules.

Statements of general rules occurred as verbal descriptions, written expres-
sions, and algebraic descriptions of rules that described mathematical relation-
ships. For example, when working with a gear problem, Ming described a rule ver-
bally: “You times the number of small gear turns by two thirds and you would get
the number of the big gear.” Larissa later expressed the same idea algebraically
with the equation s b) (( )2

3 . Both students engaged in the generalizing action of
searching for the same relationship before eventually reaching the point at which
they could explicitly state the rule.

Students who identified general patterns described a mathematical pattern ei-
ther verbally or in written form. They often produced these statements after engag-
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ing in the generalizing action of searching for the same pattern. Recall the prior ex-
ample in which Mario focused on a pattern in a well-ordered table with differences
of 7 between successive y-values (see Figure 7). He traced his finger down the
y-column and identified the pattern “on the x side it’s going up by ones and on the
other side it’s going up by...sevens.”

Students who stated general strategies or procedures were able to describe their
strategies in ways that were no longer limited to actions performed in one specific
case. Instead, the description could pertain to a general class of problems. For ex-
ample, Timothy was asked how he could determine, given a table of distances and
times, if a character walked the same speed or not. Timothy described what he did
with each table, explaining “You can find the smallest whole-number pair, and like
either put one over the other and simplify and see if all of them do the same thing.”
Timothy’s method involved calculating a ratio based on the smallest ordered pair,
and then taking the ratio of every other pair to see if they were equivalent. Timo-
thy’s description of his strategy was not limited to one particular table or speed, but
instead represented a statement of a more general approach.

Statements of global rules are generalizations about the meaning of mathemati-
cal objects or ideas. Global rules are not limited to specific cases or types of situa-
tions; instead, they represent a student’s more general understanding of an idea,
such as what constitutes linearity or what slope represents. For example, Juanita,
an interview participant, developed a rule that a table of data must contain three
patterns for the data to be linear:

Juanita: For it to make a straight line there has to be a pattern this way (gesturing
down the x column), a pattern this way (gesturing down the y column),
and a pattern going back and forth right here (gesturing across the x &
y columns).

Even though this rule is only valid for well-ordered tables, it was general for
Juanita and she used it to make decisions about whether data in a table would result
in a straight line. Because Juanita viewed it as a valid and general rule, it was cate-
gorized as a reflection generalization despite its limited correctness.

Definitions

Cases in which students made statements conveying the fundamental character
of a pattern, relation, class, or other phenomenon were characterized as definitions.
For example, Dora worked with two gears, one with 8 teeth and one with 12 teeth.
She had already generalized that regardless of the particular number of rotations
the connected gears would make, the larger gear would rotate two thirds as many
times as the small gear. When asked to think about whether there could be any
other sized gears that could demonstrate the same ratio, Dora eventually realized
that there were multiple cases of gears that would fulfill this relation:
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Dora: Probably like if you, so it was two thirds. You can get anything that is equal
to two thirds.

Dora referred to the idea that any two gears with a 2:3 ratio of teeth would also
have a 2:3 ratio of revolutions. Thus she defined a class of gear pairs that would sat-
isfy the two thirds rotation relation.

Influence

There were cases in which students implemented previously developed gener-
alizations in new problems or contexts. The influence of a previously developed
generalization on new activity was also categorized as a reflection generalization,
adhering to the requirement that reflection generalizations represent one’s ability
to either identify or use his or her created generalization. A student may implement
a prior idea or strategy, or may modify a prior idea as he or she approaches a new
problem.

Prior idea or strategy. The influence of prior activity can be very difficult to
categorize unless the researcher is familiar with the student’s history and the his-
tory of the student’s prior instruction. To categorize these instances, cases were
sought in which it was possible to detect the trace of a student’s prior experience on
his or her current behavior. In one example, students worked with a table of
clown’s total distances from home and times (Figure 13). Julie explained that she
initially thought the clown’s speed would be 4/9: “At first I thought it was 4/9, but I
tried my equation and it didn’t work.”

Julie’s first reaction to the table was to focus on the (9,4) pair and conclude that
it represented the clown’s speed. Julie’s attention to this pair suggests the influence
of the prior gear problems. When the students worked with the gears and created
tables of rotations, they fixated on the smallest whole-number pair in the table. The
students eventually generalized that the smallest whole-number pair represented
the gear ratio. Their attention to this pair in every gear rotation table, in combina-
tion with other studies showing that students reasoning in speed situations do not
behave this way (Lobato & Siebert, 2002; Lobato & Thanheiser, 2000, 2002), sug-
gests the influence of prior activity on the new problem. Although Julie’s initial at-
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tempt was unsuccessful, her attention to 4/9 was still categorized as a generaliza-
tion because she approached the distance-time table differently thanks to her
experience with gears.

Modified idea or strategy. Once Julie and Larissa realized that 4/9 was not
the clown’s speed, they adapted their first idea. Larissa explained: “And then I real-
ized that you had to subtract four from nine to get five and four, and that was, and
then that switched is 4/5.” Larissa subtracted four because the clown started 4 cm
away from home, and then tried 4/5 sec per cm as his speed. She compensated for
the extra +4, adapting the prior strategy developed in the gear situation to account
for the extra constant. The reflection generalization is Larissa’s adapted strategy.

Relationships Between Generalizing Actions
and Reflection Generalizations

At times students’ reflection generalizations simply represented the public ut-
terance of the generalizing action in which they had engaged. For instance, Carla’s
identification of the common property that “Each one, x, is a third of y” was a ver-
bal description of what she had found by searching for the same relation. Other
times, a reflection generalization represents a step beyond the generalizing action
by formalizing a generalization into a principle or algebraic rule. This was appar-
ent when Larissa wrote the rule s b) (( )2

3 after having searched for a relation
between the rotations of a small and a large gear. Finally, there are times when a re-
flection generalization either expands beyond the situation that framed the gen-
eralizing action–as in the case of Juanita’s global rule–or is not clearly tied to a dis-
cernible generalization action.

Part 2: Using the Taxonomy to Account for the Evolution
of Generalizing

The generalization taxonomy provides a way to consider which types of general-
izations could represent more sophisticated knowledge than others. Analysis of the
teaching experiment data revealed major trends in the growth of students’ general-
izing actions. Early in the sessions students focused on generalizing from immedi-
ate relationships between quantities, whereas in the later sessions they generalized
across different quantitative situations to establish more global rules about linear-
ity. In attempting to capture the nature of increased sophistication, students’ later
generalizations were contrasted to earlier generalizations. The more sophisticated
generalizations were those that reflected a more complete, broad, and nuanced un-
derstanding of mathematical properties and situations.

Increased sophistication implies the development of generalizations that are
more complex, inclusive, and refined than prior generalizations. Three criteria for
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increased sophisticated proved useful to describe students’ growth. The first crite-
rion is movement from Type 1 (Relating) to Type 2 (Searching) to Type 3 (Ex-
tending) actions. As students moved from Relating to Searching to Extending,
their actions grew more goal-oriented and creative. Students who engaged in relat-
ing actions made spontaneous connections; their associations were not necessarily
deliberate or intentional. When searching, students anticipated the existence of a
relationship of similarity and coordinated their efforts on locating it. Searching ac-
tions therefore represented deliberate problem-solving behavior, whereas relating
actions did not. Finally, extending involved reasoning about objects that were not
present. Generation of new knowledge occurred within extending in a way that did
not occur when students engaged in relating or searching actions.

The second criterion is the generation of new inferences, which developed be-
cause repeated cycles of generalizing produced new understanding as well as the
creation of new ideas. Through engaging in generalizing actions and producing re-
flection generalizations, students may develop fresh insight into a problem situa-
tion. Thus, if the evolution of a student’s generalizations resulted in attention to a
different aspect of a problem, the creation of previously undeveloped ideas or more
inclusive connections, or the promotion of a more complex and nuanced under-
standing, then his or her generalizing activity was considered to have grown in so-
phistication.

The final criterion is the ability to support correct and powerful justifications.
This emerged from the belief that generalizations for which students can provide
appropriate and correct justifications will represent more sophisticated knowledge
than those for which students cannot provide such arguments. Study participants
who created generalizations that they could appropriately justify also demon-
strated evidence that these generalizations were the ones that were well connected
to other knowledge.

Iterative Action-Reflection Cycles of Generalization

Identifying relationsbetweengeneralizingactionsand reflectiongeneralizations
revealed that study participants did not engage in isolated generalizing actions, pro-
duce associated reflection generalizations, and then move on. Instead, students
moved between these behaviors, and each influenced the other in a way that allowed
the participants to develop new knowledge. Thus, students engaged in iterative “ac-
tion-reflection cycles. ” Although their initial generalizing actions and associated
reflection generalizations may have been limited or incorrect, subsequent cycles
built on previous attempts to develop more sophisticated generalizations.

The following episode is drawn from the teaching experiment, in which stu-
dents made connections between situations, extended their reasoning, described
patterns, and ultimately made inferences about quantitative relationships. Unlike
the brief data examples seen thus far, the following episode is a longer, descriptive
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excerpt presented to illustrate both the nature of students’ action-reflection cycles
of generalization and the ways in which students’ generalizing can increase in so-
phistication.

The session began with the following problem: “The table (see Figure 5) shows
some of the distances and times that Clown traveled. Is he going the same speed the
whole time, or is he speeding up and slowing down? How can you tell?”

Julie: Hey, we had this before!
Larissa: Really? Really?

Julie: Wasn’t this like the gears?
Larissa: Yes, it was!

The girls performed the generalizing action of connecting back to a prior situation,
noting that this table was similar to a table with which they had worked in the gears
situation. (In fact, it was the same numerical data set in a different context). Julie
produced the reflection generalization of the identification of two situations as the
same by asking, “wasn’t this like the gears?” Then Larissa said to Julie, “this is the
two thirds pair”, thus identifying a common property across both problems. The
first gear problem the students had encountered involved a gear ratio of two thirds.
Larissa referred to this as the “two thirds pair” because she and the other students
typically identified the smallest whole-number rotation pair for each gear set.

Larissa then made use of an idea she had developed when working with gears.
She had previously created a gear-pair table in which the rotations of a small gear
increased by one half, and the rotations of a large gear increased by one third. Now
Larissa decided to do the same thing. She created a new table of values, in which
the centimeters increased by one half and the seconds increased by one third. Thus,
Larissa’s reflection generalization is the influence of a prior idea in creating the ta-
ble shown in Figure 14.

In creating the new table, Larissa extended her reasoning by continuing the “1/
2:1/3” pattern in the original table. She explained that “I made the table to start at 1,
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and then I used the gear pair that we had, with the two thirds, um relationship, so I
went up by one half on one side and two thirds on the other side.” Although Larissa
said two thirds, she actually used one third in her table, so she could have misspok-
en. The fact that Larissa actually said “gear pair” is further evidence that she was
thinking about the gear situation and implementing what she had learned there.

Timothy noticed that Larissa’s table represented a general pattern, which he
stated explicitly: “They’re going up by halves and one thirds.” So his reflection
generalization was the identification of the general pattern in Larissa’s table. The
teacher/researcher asked Larissa what she noticed by making this table, and she
said “That, the, since the pattern’s staying the same throughout the whole thing, he
has to be going the same pace.” Larissa therefore used the pattern to make a deduc-
tion about the clown’s speed. To clarify, she also made a statement of a general pat-
tern: “Since it’s always going up by one half on the centimeters side and two, and
one third on the seconds side, he can’t be speeding up if, if he’s going the same, but
they’re the same.” The teacher/researcher pushed Larissa to explain further:

TR: How come, how come the pattern staying the same means that he’s
walking the same speed?

Julie: Oh! Oh! Oh!
Larissa: Because if he sped up, then the, the distance that he went in the amount

of seconds that he went would decrease. And if he slowed down then it
would increase.

Other students chimed in with their possible reasons why, and eventually the
teacher/researcher asked for a summary:

TR: I think I know what you’re all saying. But let me just ask one final time
to restate why increasing by 1/2 cm every time the seconds increases by
one third, why that pattern holding means that the clown is walking the
same speed?

Larissa: Because throughout the table it’s going, he’s going 1/2 cm in one third
of a second. So every time he went another half a centimeter, he’d have
to go another third of a second.

Larissa’s justification involved mentally holding one quantity constant and chang-
ing the other to deduce how that would affect the clown’s speed. Her statement also
contained an identification of a continuing phenomenon (every time...) and,
through the process of explaining, her focus shifted away from the naked numbers
toward the idea of the clown walking with the associated quantities, centimeters
and seconds.

Once Larissa and Julie had identified the speed and gear situations as similar,
Larissa was able to identify a property for both cases, the “two thirds pair.” So
Larissa had moved from a generalizing action, connecting back, to a reflection
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generalization, the identification of a common property. After she identified this
property, the influence of a prior idea is evident as Larissa created the new table.
Thus, movement from one type of reflection generalization to another type oc-
curred. This allowed Larissa to create something new, a table of speed values with
previously unproduced same-speed pairs. As she did this, Larissa engaged in the
generalizing action of extending by continuing the “1/2:2/3” pattern. By extend-
ing, Larissa created new mathematical objects in the form of new same-speed
pairs.

Timothy and Larissa both identified the 1/2:1/3 general pattern, which
spurred Larissa to conclude that the clown must be going the same pace. The
idea that Larissa learned something new is indicated by her remarks when she
was asked to explain why the pattern staying the same meant that the clown was
walking the same speed. Specifically, Larissa’s explanation connected the num-
ber patterns in the table to the quantities and the quantitative relationships in the
situation, a connection she previously lacked. Larissa made inferences about
those quantitative relationships thanks to her generalizing acts with the numbers
and number patterns.

The episode demonstrates that students can generalize in one way and then,
through their actions and statements, be spurred to generalize in a new way. The
chain of students’generalizing did not occur haphazardly, but instead developed in
ways that allowed the students to build more sophisticated connections. In each
case, Larissa’s generalizing action sparked an idea that she was able to describe as
a reflection generalization. By making her reflection generalizations explicit,
Larissa was able to progress to a higher level of generalizing action, fulfilling the
first criterion of moving from Type 1 (Relating) to Type 2 (Searching) to Type 3
(Extending). Each level of generalizing in turn encouraged new ideas and connec-
tions, which is described by the second criterion, the generation of new inferences.
The hypothesis that Larissa developed new knowledge is additionally supported
by her justification connecting number patterns to quantities, which fulfills the
third criterion requiring correct and powerful justifications.

DISCUSSION

Prior research on both transfer and generalization has distinguished different types
of generalization (e.g., Davydov, 1990; Detterman, 1993), described levels of gen-
eralization and categories of transfer (e.g., Barnett & Ceci, 2002; Garcia-Cruz &
Martinon, 1998), and illustrated strategies for developing generalizations (Lannin,
2003). However, none of the existing constructs presents a comprehensive yet em-
pirically grounded categorization system. The Generalization Taxonomy fills this
gap by combining the dimensions raised by other constructs into one comprehen-
sive system. Moreover, the Generalization Taxonomy provides a number of con-
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nections between mathematics-education generalization research and transfer re-
search. This section (a) discusses the connections between these two traditions of
generalization research, (b) addresses the implications of having adopted an ac-
tor-oriented perspective toward mathematical generalization, and (c) considers
some methodological contributions gained by reconceptualizing what it means to
generalize.

Connecting Two Traditions of Generalization Research

The Generalization Taxonomy not only builds on constructs identified in the trans-
fer literature and the mathematics-education generalization literature, but also ex-
tends both in a number of ways. Specifically, several categories within the taxon-
omy are related to constructs identified in both the traditional and reconceived
transfer literature. For instance, the generalizing action of relating includes the ac-
tion of forming an association of similarity between two or more situations, which
shares some elements with Carraher and Schliemann’s (2002) discussion of the
ways in which learners can adjust their understanding of initial learning situations
to create relations of similarity with transfer situations. Some extending actions
could constitute cases of vertical transfer (Gagné, 1977), particularly during times
when students may remove particulars or expand the range of applicability to de-
velop higher level understanding. The reflection generalization category of influ-
ence mirrors several reconceived views of transfer as the influence of prior learn-
ing on new situations (Lobato, 2006; Marton, 2006).

Several categories within the taxonomy are also related to constructs identified
in the mathematics education generalization literature. For instance, when en-
gaged in the generalizing action of relating, students sometimes focus on proper-
ties that they see as similar across two situations, which coincides with Dreyfus’s
(1991) notion of generalizing as identifying commonalities. Extending actions in-
tersect with Kaput’s (1999) idea of extending the range of reasoning beyond the
case or cases considered, and Harel’s (2001) notions of process-pattern generaliza-
tion and result-pattern generalization occur when students extend by operating or
by continuing a pattern. The reflection generalization category of the identification
of general rules is similar to Lannin’s (2003) contextual strategy for developing a
generalization, in which students construct a rule on the basis of a relation deter-
mined from the problem. These connections between students’ generalizing ac-
tions, reflection generalizations, and views of transfer support the notion that cer-
tain types of mathematical generalization can be conceptualized as a form of
transfer.

However, the Generalization Taxonomy also extends beyond existing types of
generalization identified in either the transfer literature or the mathematics educa-
tion literature. For instance, the taxonomy offers a description of both the types of
mental processes students engage in as they generalize and the statements of gen-
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eralization students produce. Although others have described either student ac-
tions while generalizing (Dubinsky, 1991) or final statements of generalization
(Stacey & MacGregor, 1997), only one other construct attends to the difference
between generalizing acts and products of generalization. Namely, Davydov’s
(1990) work discusses the difference between generalizing processes and prod-
ucts, but this distinction depends on a more specific definition of generalization as
the identification of a class of things, all sharing a particular property. Although
Davydov’s notion of process is similar to the generalizing action of extending, his
notion of product refers to a student’s ability to abstract himself or herself from
certain particular and varying attributes of an object. This could include many re-
flection generalizations, such as the statement of a general pattern or a global rule.

By elaborating the previously ignored action–reflection distinction, the Gener-
alization Taxonomy can help researchers discern how these types are related to one
another. The data presented in this study suggest a connection between the ways in
which students engage with a problem, and the resulting generalization statements
they produce. Through an examination of which generalizing actions promote par-
ticular reflection generalizations, the taxonomy allows one to study the processes
students go through as they generalize, beginning with initial mental acts and cul-
minating in statements of generalization.

Finally, although existing constructs describing “the explicit identification and
exposition of commonality across cases as a generalizing activity” (Kaput, 1999)
fall under the umbrella of the generalizing action of searching, no existing research
distinguishes the different ways in which one can identify and expose those com-
monalities. The searching category in the Generalization Taxonomy, which in-
cludes acts of students attending to what was the same across different situations,
cases, numbers, or problems, accounts for these differences by describing four dis-
tinct searching actions.

Benefits of an Actor-Oriented Generalization Taxonomy

As discussed in the introduction, one common limitation of the traditional transfer
approach and much of the literature on generalization in mathematics education
has been a reliance on the observer’s perspective. This has led to a smaller range of
student actions that are capable of being measured as generalizations, which has
resulted in an underestimation of the amount of generalizing that occurs. Further-
more, the categorization systems developed within both traditions reflect this per-
spective. For instance, Barnett and Ceci (2002) created a transfer taxonomy with
nine dimensions that contributes to the literature by clarifying distinctions between
near and far transfer; however, its observer’s orientation results in the taxonomy
describing task dimensions rather than students’ generalizing processes. Although
Lobato’s (2003) actor-oriented transfer perspective addresses these limitations, it
does not offer any type of system for categorizing generalizations. Thus, one con-
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tribution of this study to the on going transfer dialog is a taxonomy that allows re-
searchers to identify types of generalizing actions (and the associated reflection
generalizations) by attending to students’ perceptions of similarity.

Learners’ Conceptions

By adopting the actor-oriented transfer perspective to incorporate multiple di-
mensions into a single categorization scheme, the Generalization Taxonomy also
provides a way to identify novice students’ actions throughout the evolution of
their abilities to generalize. Bransford and Schwartz (1999) warned that

Prevailing theories and methods of measuring transfer work well for studying
full-blown expertise, but they represent too blunt an instrument for studying the
smaller changes in learning that lead to the development of expertise. New theories
and measurements of transfer are required. (p. 24)

By identifying actions and reflections that represent a range of sophistication, the
taxonomy allows researchers to study novices’ conceptions as they generalize.

Moreover, an adoption of the actor-oriented perspective allows for an expan-
sion of the range of student actions that “count” as generalization. For instance, al-
though the generalizing actions that mirror work on transfer fall within the relating
or extending categories, searching actions are not those which researchers have
typically considered to constitute generalization. Data from the study revealed that
students frequently engaged with problems in ways that originally appeared to be
unproductive, but later were able to develop powerful results. For instance, a stu-
dent may initially approach a problem by engaging in the generalizing action of
searching for the same pattern or relationship in a table. This search may at times
constitute an extended, inefficient process until an appropriate pattern is identified.
However, if allowed to continue this action, searching can help a student ultimately
formulate and extend algebraically useful relations. The Generalization Taxonomy
validates and elaborates searching actions by demonstrating how these actions can
lead to the production of the types of generalizations valued by the teaching and re-
search communities.

The Evolution of Generalizing

The Generalization Taxonomy’s actor-oriented perspective also allows for the
study of the evolution of students’ reasoning. It accounts for how students go
through cycles of generalizing, and how these cycles can lead to more sophisti-
cated and more powerful general statements over time. Most important, the taxon-
omy moves beyond casting generalization as an activity that students either do or
do not engage in successfully to allow researchers to identify what students see as
general. This move away from a success–failure model toward a more nuanced
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view of generalizing could help researchers and teachers better understand the pro-
cesses students engage in as they generalize, either correctly or incorrectly. Fur-
thermore, teachers who can view incomplete or incorrect generalizations as neces-
sary steps in the larger process of developing a habit of generalizing will be more
likely to support those steps, rather than curtail such activity. By adopting the ac-
tor-oriented transfer lens, the Generalization Taxonomy allows the researcher to
move beyond the standard model of correct pattern identification, formalization,
and rule development as the sole route toward mathematical generalization.

Methodological Contributions

A final benefit of borrowing from the insights gained in the reconceived transfer
literature rests with the study’s shift beyond the traditional methodological orienta-
tion. Traditional studies examining both transfer and generalization rely on dis-
crete tasks, either the learning task–transfer task model in transfer studies, or the
pattern generalization task model in generalization studies. The Generalization
Taxonomy introduces a way for researchers to study processes of generalization
and transfer in a different way; it provides a structure for identifying processes of
generalization within one classroom setting and even within one problem context.
Moreover, the Generalization Taxonomy addresses students’ actions as they occur
in instructional settings over longer periods of time. By studying students’ emerg-
ing abilities to seek similarity, extend their reasoning, make connections between
ideas and situations, and ultimately develop more general structures, the study re-
ported in this article was able to capture students engaging in generalizing activi-
ties that would have been otherwise missed.

Further Questions

The Generalization Taxonomy represents only what occurred in two settings with
seventh- and eighth-graders studying linear functions. The small-scale nature of
the project cannot give rise to a definitive scheme, but it can offer an initial system
with which to interpret students’ reasoning in other settings. Sloane and Gorard
(2003) describe three main stages of model building: model formulation, estima-
tion or fit, and model validation. This study supported the first stage of model
building, the formulation of the taxonomy as a model for students’generalizations.
Although Sloane and Gorard emphasize that “model formulation is often the most
important and the most difficult stage of the research process” (p. 29), it is still nec-
essary to further test the taxonomy across different populations and content do-
mains. Thus, future studies should focus on the testing and validation of the taxon-
omy with new data sets.

Furthermore, the results presented here represent the influence of a small num-
ber of factors on students’ generalizing, such as the types of problems students en-
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countered, the types of artifacts used, the nature of the questions the students re-
sponded to, and how the students focused their attention as they worked with
problems. Other factors surely influenced students’ generalizing activity, such as
the classroom culture in which they worked, the discourse patterns in which the
students engaged, the students’ background knowledge and attitudes toward the
material they encountered, and the ways in which the students interacted with their
peers and their teacher. Future work geared toward better understanding how in-
structional environments support generalizing will contribute to a richer framework
that takes into account these larger social influences on students’ generalizing.

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation (NSF) under
Grant REC–9733924. The views expressed do not necessarily reflect official posi-
tions of the NSF.

I thank Eric Knuth, Mitchell Nathan, and Patrick Callahan for their thoughtful
comments on a draft of this article. After submitting this article, I received con-
structive suggestions from four anonymous reviewers and from the editors: Janet
Kolodner, Yasmin Kafaii, and Joanne Lobato.

REFERENCES

Barnett, S., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far trans-
fer. Psychological Bulletin, 128(4), 612–637.

Beach, K. (1999). Consequential transitions: A sociocultural expedition beyond transfer in education.
Review of Research in Education, 28, 46–69.

Bernard, H. E. (1988). Research methods in cultural anthropology. Beverly Hills, CA: Sage.
Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple impli-

cations. In A. Iran-Nejad & P. D. Pearson (Eds.), Review of Research in Education (Vol. 24, pp.
61–100). Washington, DC: American Educational Research Association.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educa-
tional Researcher, 18, 32–41.

Campione, J. C., Shapiro, A. M., & Brown, A. L. (1995). Forms of transfer in a community of learners:
Flexible learning and understanding. In A. McKeough, J. Lupart, & A. Marini (Eds.), Teaching for
transfer: Fostering generalization in learning (pp. 35–68). Mahwah, NJ: Lawrence Erlbaum Associ-
ates, Inc.

Carpenter, T., & Franke, M. (2001). Developing algebraic reasoning in the elementary school: General-
ization and proof. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th
ICMI study conference: The Future of the teaching and learning of algebra (pp. 155–162). Mel-
bourne, Australia: The University of Melbourne.

Carraher, D., & Schliemann, A. D. (2002). The transfer dilemma. The Journal of the Learning Sciences,
11, 1–24.

CATEGORIZING GENERALIZATIONS 259



Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. Journal for
Research in Mathematics Education, 28, 258–277.

Davydov, D. D. (1990). Soviet studies in mathematics education: Vol. 2. Types of generalization in in-
struction: Logical and psychological problems in the structuring of school curricula. Reston, VA:
National Council of Teachers of Mathematics.

Detterman, D. (1993). The Case for the Prosecution: Transfer as an epiphenomenon. In D. Detterman &
R. Sternberg (Eds.), Transfer on Trial: Intelligence, cognition, and instruction. Norwood, NJ: Ablex.

diSessa, A. A., & Wagner, J. F. (2005). What coordination has to say about transfer. In J. P. Mestre (Ed.),
Transfer of learning from a modern multidisciplinary perspective (pp. 121–154). Greenwich, CT: In-
formation Age Publishing.

Dreyfus, T. (1991). Advanced mathematical thinking processes. In D. Tall (Ed.), Advanced mathemati-
cal thinking (pp. 25–41). Dordrecht, the Netherlands: Kluwer.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Ad-
vanced mathematical thinking (pp. 95–123). Dordrecht, the Netherlands: Kluwer.

English, L., & Warren, E. (1995). General reasoning processes and elementary algebraic understand-
ing: Implications for instruction. Focus on Learning Problems in Mathematics, 17(4), 1–19.

Gagné, Robert M. (1977). The conditions of learning and theory of instruction. New York: Holt,
Rinehart & Winston.

Garcia-Cruz, J., & Martinon, A. (1997). Actions and invariant in schemata in linear generalizing prob-
lems. In E. Pehkonen (Ed.), Proceedings of the 21st Conference of the International Group for the
Psychology of Mathematics Education (Vol. 2, pp. 289–296). Lahti, Finland: PME.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative re-
search. Hawthorne, NY: Aldine.

Greeno, J. G. (1997). Response: On claims that answer the wrong questions. Educational Researcher,
26(1), 5–17.

Gruber, H., Law, L., Mandl, H., & Renkl, A., (1996). Situated learning and transfer. In P. Reimann & H.
Spada (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science (pp.
168–188). Oxford, England: Pergamon.

Harel, G. (2001). The development of mathematical induction as a proof scheme: A Model for
DNR-based instruction. In S. Campbell & R. Zaskis (Eds.), Learning and teaching number theory
(pp. 185–212). Norwood, NJ: Ablex.

Harel, G., & Tall, D. (1991). The general, the abstract, and the generic. For the Learning of Mathemat-
ics, 11, 38–42.

Kaput, J. (1999). Teaching and learning a new algebra with understanding. In E. Fennema, & T.
Romberg (Eds.), Mathematics classrooms that promote understanding (pp. 133–155).

Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Kieran, C. (1992). The learning and teaching of school algebra. In D. Grouws (Ed.), Handbook of Re-

search on Mathematics Teaching and Learning (pp. 390–419). New York: Macmillan.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren, Volume 1. Chi-

cago: University of Chicago Press.
Lannin, J. K. (2003). Developing algebraic reasoning through generalization. Mathematics Teaching in

the Middle School, 8(7), 342.
Lappan, G., Fey, J., Fitzgerald, W., Friel, S., & Phillips, E. (1998). Connected mathematics project. Ann

Arbor, MI: Dale Seymour Publications.
Larson, R., Boswell, L., Kanold, T., & Stiff, L. (2001). Algebra I. Evanston, IL: McDougal Little.
Lave, J. (1988). Cognition in practice: Mind, mathematics, and culture in everyday life. Cambridge,

UK: Cambridge University Press.
Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz,

C. Kieran, & L. Lee (Eds.), Approaches to algebra (pp. 87–106). Dordrecht, the Netherlands:
Kluwer.

260 ELLIS



Lobato, J. (2003). How design experiments can inform a rethinking of transfer and vice versa. Educa-
tional Researcher, 32(1), 17–20.

Lobato, J. (2006). Alternative perspectives on the transfer of learning: History, issues, and challenges
for future research. Journal of the Learning Sciences, 15(4), ???.

Lobato, J. (in press-a). How rethinking assumptions about the “transfer” of learning can inform re-
search, instructional practices, and assessment. In C. Rasmussen & M. Carlson (Eds.), Making the
Connection: Research and Teaching in Undergraduate Mathematics. Washington, DC: Mathemati-
cal Association of America.

Lobato, J. (in press-b). Research methods for alternative approaches to transfer: Implications for design
experiments In A. Kelly & R. Lesh (Eds.), Design Research in Education. Mahwah, NJ: Lawrence
Erlbaum Associates, Inc.

Lobato, J., Clarke, D., & Ellis, A. B. (2005). Initiating and eliciting in teaching: A reformulation of tell-
ing. Journal for Research in Mathematics Education, 36(2), 101–136.

Lobato, J., & Siebert, D. (2002). Quantitative reasoning in a reconceived view of transfer. The Journal
of Mathematical Behavior, 21(1), 87–116.

Lobato, J., & Thanheiser, E. (2000). Using technology to promote and examine students’ construction
of ratio-as-measure. In M. L. Fernández (Ed.), Proceedings of the 22nd annual meeting of the North
American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 2,
pp. 371–377). Columbus, OH: Educational Resources Information Center.

Lobato, J., & Thanheiser, E. (2002). Developing understanding of ratio and measure as a foundation for
slope. In B. Litwiller & G. Bright (Eds.), Making sense of fractions, ratios, and proportions: 2002
yearbook (pp. 162–175). Reston, VA: National Council of Teachers of Mathematics.

Marton, F. (2006). Sameness and difference in transfer. Journal of the Learning Sciences, 15(4), ???.
Orton, A., & Orton, J. (1994). Students’ perception and use of pattern and generalization. In J. P. da

Ponto & J. F. Matos (Eds.), Proceedings of the 18th international conference for the Psychology of
Mathematics Education (Vol. 3, pp. 407–414). Lisbon, Portugal: PME Program Committee.

Pea, R. (1989). Socializing the knowledge transfer problems (Report No. IRL89-0009). Palo Alto, CA:
Institute for Research on Learning.

Perkins, D. N., & Salomon, G. (1988). Teaching for transfer. Educational Leadership, 46(1), 22–32.
Perkins, D. N., & Salomon, G. (1989). Are Cognitive Skills Context Bound? Educational Researcher,

18(1), 16–25.
Piaget, J., & Henriques, G. (1978). Recherches sur la généralisation. Paris: Presses Universitaires de

France.
Reed, S. K., Ernst, G. W., & Banerji, R. (1974). The role of analogy in transfer between problem states.

Cognitive Psychology 6, 436–450.
Roschelle, J., & Kaput, J. J. (1996). SimCalc Mathworlds for the Mathematics of Change. Communica-

tions of the ACM, 39(8), 97–99.
Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. MA: Cambridge University

Press.
Sloane, F., & Gorard, S. (2003). Exploring modeling aspects of Design Experiments. Educational Re-

searcher, 32(1), 29–31.
Stacey, K. (1989). Finding and using patterns in linear generalising problems. Educational Studies in

Mathematics, 20, 147–164.
Stacey, K., & MacGregor, M. (1997). Building foundations for algebra. Mathematics Teaching in the

Middle School, 2(4), 253–260.
Strauss, A., & Corbin, C. (1990). Basics of qualitative research: Grounded theory procedures and tech-

niques. Newbury Park, CA: Sage.
Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of

rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of
mathematics (pp. 181–234). Albany, NY: SUNY Press.

CATEGORIZING GENERALIZATIONS 261



Tuomi-Gröhn, T., & Engeström, Y. (2003). Between school and work: New perspectives on transfer
and boundary crossing. Amsterdam: Pergamon.

Von Glasersfeld, E. (1995). Radical constructivism: A way of knowing and learning. Bristol, PA:
Falmer.

262 ELLIS




