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We address the telling/not-telling dilemma in mathematics education. Telling is 
instructionally important, but has been downplayed because of (a) perceived incon- 
sistencies between telling and constructivism, (b) increased awareness of the nega- 
tive consequences of relying too heavily on telling, and (c) a focus on "non-telling" 
actions as pedagogical implications of constructivism. In response, we advance a theo- 
retical reformulation of telling as the set of teaching actions that serve the function 
of stimulating students' mathematical thoughts via the introduction of new ideas into 
a classroom conversation. We reformulate telling in three ways: (a) in terms of the 
function (which involves attention to the teacher's intention, the nature of the teaching 
action, and the students' interpretations of the action) rather than theform of teachers' 
communicative acts; (b) in terms of the conceptual rather than procedural content of 
the new information; and (c) in terms of its relationship to other actions rather than 
as an isolated action. This reformulation resolves some of the concerns with teaching 
as telling and helps establish the legitimacy of providing new information within a 
constructivist perspective on learning. 

Key words: Constructivism; Direct instruction; Reform in mathematics education, 
Teaching practice; Teaching (role, style, methods) 

In this article, we develop a case that the pedagogical action of telling has been 
systematically downplayed in the mathematics education literature. Telling has tradi- 
tionally meant stating information or demonstrating procedures (Smith, 1996). A 
perceived inconsistency between telling and constructivism, an understanding of 
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the potential negative consequences of relying too heavily on telling, and a focus 
on the development of a range of "nontelling" actions have all contributed to a de- 
emphasis of telling. We will demonstrate that there are many reasons why telling 
can be important in the classroom. Whether or not one should tell is a central tension 
for teachers and teacher educators concerned with developing a practice connected 
to constructivist tenets. Although other researchers have recognized the need to 
expand the set of legitimate telling actions, existing approaches often avoid 
addressing the direct introduction of new concepts. This, in combination with a lack 
of conceptual coherence across the set of expanded telling actions, suggests a need 
to reformulate telling. 

Our solution is to offer a reformulation of telling as "initiating" by rethinking 
telling in three ways: (a) in terms of the function rather than the form of teachers' 
communicative acts; (b) in terms of the conceptual rather than the procedural 
content of the new information; and (c) in terms of its relationship to other actions 
rather than as an isolated action. By analyzing three instructional episodes from our 
research data, we develop a variety of initiating actions, demonstrate how initiating 
is most productively conceived in conjunction with the action of eliciting, and show 
how initiating can foster students' conceptual growth in mathematics. Through this 
approach, we intend to legitimize pedagogical actions that may have either lost cred- 
ibility as researchers and teachers have grappled with the implications of construc- 
tivism or that were never thoroughly developed to begin with. 

BACKGROUND 

Reconciling Telling With Constructivism 

Although the constructivist perspective on learning does not dictate pedagogy, 
it nevertheless implies consequences for teaching (Confrey, 1990; Wood, 1995; 
Wood, Cobb, & Yackel, 1995). Jaworski (1994), citing and paraphrasing von 
Glasersfeld (1989), suggested that adopting a constructivist perspective can change 
teachers' actions and intentions in the following four ways: First, a teacher may 
begin to differentiate his or her actions that are aimed at generating understanding 
from those aimed at the repetition of procedures; second, a teacher's focus may shift 
away from external responses toward what can be inferred about a student's mental 
actions; third, a teacher may gain understanding that knowledge cannot be directly 
transferred to students via language; and fourth, given the belief that students are 
trying to make sense in their experiential worlds, a teacher may become more inter- 
ested in students' actions as clues to understanding what models students are 
constructing. 

Researchers interested in clarifying implications of constructivism for teaching 
have identified multiple new teaching actions aimed at helping students develop a 
conceptual understanding of mathematics. These actions include (a) constructing 
models of students' understanding of mathematics (Confrey, 1990; Shifter, 2001); 
(b) choosing and sequencing rich mathematical tasks (Henningsen & Stein, 1997; 
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Lampert, 1990); (c) predicting student reasoning (Smith, 1996); (d) generating and 
revising hypothetical learning trajectories (Shifter, 2001; Simon, 1995); and (e) 
directing classroom discourse (Cobb, Wood, & Yackel, 1993). Teachers are encour- 
aged to listen more carefully to their students, pose interesting problems, and allow 
students to engage in independent mathematical reasoning and problem-solving 
activities. These important actions broaden the teacher's role in the classroom. 

Traditional telling actions have not been strongly emphasized in these discussions 
of pedagogy. For example, Hiebert et al. (1997) noted that many of the new instruc- 
tional actions emphasized in recent literature downplay the teacher's role as a 
presenter of information: "Periodically, educational reformers have advocated 
presenting less information, shifting more responsibility to the students to search 
for or invent the information they need" (p. 36). Researchers interested in reforming 
teaching actions characterize teachers as listeners, facilitators of appropriate math- 
ematical discourse, and guides through well-chosen problem-solving activities, but 
rarely as presenters of information (Carpenter, Ansell, & Levi, 2001; McNair, 1998; 
Shifter, 2001; Stein, Smith, Henningsen, & Silver, 2000). A teacher's ability to tell 
might be reduced to restating what a student has discovered, or telling the entire 
class how a student solved a particular problem (Wood & Turner-Vorbeck, 2001). 

Why has telling been downplayed? Along with a shift toward constructivist 
theory and its possible implications for teaching came strong criticism of the trans- 
mission model of teaching. The transmission model is based on an assumption that 
mathematics consists of a fixed set of facts and procedures and that teaching is 
centered on telling students how to carry out those procedures (Battista, 1994; 
Rittenhouse, 1998). Teachers' words carry intrinsic meaning and are assumed to 
be directly comprehended by students (Cobb, 1988). Constructivism challenges the 
assumptions about mathematics teaching and learning inherent in the transmission 
model (Confrey, 1990). Researchers maintain that mathematical structures are 
neither perceived nor intuited, but are constructed by reflectively abstracting from 
and reorganizing activity (Cobb, 1988; von Glasersfeld, 1995). Thus, when teaching 
is viewed through constructivist theory, the effective teacher no longer stands in 
front of the class and imparts facts and procedures to students (Richardson, 2001; 
Wood, Cobb, & Yackel, 1995). Because telling is a central characteristic of the trans- 
mission teaching model, the move away from this model may be associated with 
a discomfort with any type of telling. 

Certainly there are many drawbacks of traditional telling actions. The "teaching 
as telling" practice is undesirable when it (a) minimizes the opportunity to learn 
about students' ideas, interpretations, images, and mathematical strategies; (b) 
focuses only on the procedural aspects of mathematics; (c) emphasizes the teacher's 
authority as the ultimate arbiter of mathematical truth rather than developing the 
students' responsibility forjudgments of mathematical correctness and coherence; 
(d) minimizes the possibility of cognitive engagement on the part of students; (e) 
communicates to students that there is only one solution path; and (f) represents 
premature closure of mathematical exploration. 
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Beyond these reasons, however, constructivist tenets may also suggest a theo- 
retical justification for emphasizing other teaching actions over traditional telling. 
The notion that students construct new knowledge based on prior knowledge as they 
organize their experiential worlds encourages teaching actions centered on listening 
to students' explanations and attending to their reasoning (Nelson, 2001). The model 
of students learning through accommodation as they attempt to resolve perturba- 
tions implies that teachers should focus on shaping students' progress through care- 
fully chosen questions, problems, and challenges (Simon, 2001). Teachers should 
generate situations that stimulate children's mathematical activity, and should 
realize that substantive learning occurs through interaction, conflict, and surprise 
(Wood, 1995). 

Furthermore, Piaget (1970) warned that "each time one prematurely teaches a 
child something he could have discovered himself the child is kept from inventing 
it and consequently from understanding it completely" (p. 715). Thus, it is not 
surprising that research and reform documents frequently develop a range of peda- 
gogical actions focused on listening, guiding, and shaping classroom discourse while 
downplaying actions centered on introducing new mathematical ideas (Ball, 1993; 
Lampert, 1991; McClain & Cobb, 1998). For example, the Professional Standards 
for Teaching Mathematics (National Council of Teachers of Mathematics [NCTM], 
1991) listed seven roles in discourse for teachers, only one of which addresses 
providing information. This nod to telling notes that "decisions when to tell students 
something directly ... depend on teachers' understanding of mathematics and of 
their students" (p. 36). The implication is that teachers already know how to tell, 
but need to learn when to tell. Telling is folded into a minor support role in the larger 
system of guiding the development of mathematical discourse: Teachers might occa- 
sionally tell students about vocabulary, conversational norms, or facts but must learn 
when to do so in order to best facilitate the flow of discussion (McClain & Cobb, 
1998; Richardson, 2001; Rittenhouse, 1998). We take a different view by proposing 
that telling actions differ when the goal is to develop concepts as opposed to proce- 
dures. These telling actions require further articulation, just as other teaching 
actions have been more thoroughly developed. 

Several researchers have noted the common misconception that constructivism 
implies a "discovery" view of pedagogy that advises against telling students 
anything (Clement 1997; Cobb, 1994; Ernest, 1995). The constructivist assertion 
that "knowledge is the result of a learner's activity rather than of the passive recep- 
tion of information" (von Glasersfeld, 1991, p. xiv) is sometimes misinterpreted to 
mean that students should construct all knowledge, rather than recognizing that 
students do construct their own knowledge, even in traditional settings. Certainly 
this misinterpretation is not ubiquitous among all researchers or all teachers. For 
example, Jaworski (1994) succinctly reminds us that "from a constructivist perspec- 
tive, students will construct for themselves, whatever the teacher does" (p. 137). 
However, some reports do imply that given teachers' desire to support students' 
individual construction of knowledge, teachers should not be the "dispensers" of 
mathematical ideas (Nelson, 2001). 
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It is not surprising that several studies have suggested that teachers and pre-service 
teachers frequently interpret constructivist tenets to mean that they should avoid 
proactive behavior such as telling (Cobb, Wood, & Yackel, 1990; Jaworski, 1994; 
Philipp, 1995; Rasmussen, Marrongelle, & Keynes, 2003). For example, Jaworski's 
(1994) ethnographic observations of secondary mathematics teachers included 
descriptions of teachers who demonstrated a reluctance to tell students facts, even 
when it became clear their students were not going to discover them on their own. 
The teachers believed that telling facts would somehow invalidate the students' 
construction of them. Jaworski described one such teacher and hypothesized that, 
for her, "it seemed that 'telling' indicated a lapse back into 'transmission teaching', 
and was therefore something to be avoided'. (p. 85). 

The question of telling remains a central tension for teachers and teacher educa- 
tors concerned with developing a practice connected to constructivist tenets. 
Researchers still grapple with questions concerning the role of formal knowledge 
(i.e., conventionally accepted disciplinary knowledge), specifically how formal 
knowledge should be introduced, and at what point during instruction it is appro- 
priate to tell students formal knowledge (Richardson, 2001). 

A Rationale for Telling 

Concerns with never telling. There are many reasons to be concerned with a prac- 
tice of never telling. Chazan and Ball (1999) argued that an exhortation to avoid 
telling can be disempowering to teachers, preventing them from playing a strong 
role in the classroom. Following this suggestion could reduce teachers' sense of effi- 
cacy (Smith, 1996). Furthermore, urging teachers not to tell focuses only on what 
not to do, leaving teachers with an inadequate model for how to move students 
forward during times when student-student interactions fail to generate the ideas 
necessary for mathematical growth. Clarke (2001) points out that the practice of 
structuring classrooms around student-student interactions, while potentially valu- 
able, does not guarantee that the interactions will be purposeful and effective. 
Similarly, whole class discussions in which students take turns sharing their solu- 
tion strategies will not necessarily generate learning. Romagnano (1994) describes 
these concerns as a telling/not-telling dilemma that has emerged for teachers- 
telling can pose the danger of restricting further mathematical exploration, but never 
telling can result in students disengaging with the mathematics or engaging at a 
superficial level. 

Why tell? Sometimes new ideas need to be introduced in the classroom. Hiebert 
et al. (1997) note that: 

The hands-off approach is overly conservative. It underestimates students' ability to 
make sense of powerful ideas and ways of thinking that teachers can share with them. 
In addition to respecting students as thinkers, teachers must respect mathematics as a 
discipline. (p. 30) 

Introducing new information into the classroom can serve as a catalyst for developing 
new ideas. Although it is unlikely that students will interpret new information exactly 
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as teachers anticipate, it can be helpful to state facts, share ideas, or identify conflicts, 
and then examine the sense that students make of them. In addition, introducing new 
information at critical junctures could help reduce the number of problem features 
that students must attend to, thus allowing for exploration in new areas. 

The idea of telling in a way that respects the constructed nature of knowledge 
has a long tradition, reaching back to Dewey. He noted that teachers should provide 
information if it is required for students to continue their problem-solving efforts 
and if they cannot readily find it themselves (Dewey, 1933). If facts and ideas are 
presented as something to consider and not as a prescription to follow, teachers can 
tell without fear of suppressing students' mathematics. Furthermore, telling is 
sometimes necessary for practical reasons. Students cannot be expected to reinvent 
entire bodies of mathematics, regardless of how well each concept is problematized 
by well-chosen tasks (Clarke, 1994; Romagnano, 1994). Teachers are expected to 
enculturate students into the mathematics community, sharing conventional norms 
associated with mathematical discourse, representation, and forms of argument 
(Becker & Varela, 1995; Cobb & Yackel, 1996; Driver, 1995). If teachers are to 
facilitate this enculturation, then making the ideas and conventions of the commu- 
nity available to students is essential. From this perspective, some information must 
be introduced by the teacher. In short, a telling/not-telling dilemma has emerged. 
Telling is instructionally important, but has been downplayed due to both perceived 
inconsistencies with constructivism and historical attempts to develop pedagogical 
implications of constructivism. Fortunately, this dilemma has not gone unnoticed. 

Responses to the Telling Dilemma 

Telling offloaded onto students. Rather than telling or showing a new mathe- 
matical idea, teachers may relegate telling actions to their students by asking them 
for the idea or by waiting until more knowledgeable students articulate the idea 
(Cobb, Wood, & Yackel, 1993). For example, in some of the vignettes presented 
in the Professional Standards for Teaching Mathematics (NCTM, 1991), potential 
standstills are avoided when one or two students suddenly generate ideas that 
move their classmates forward (e.g., see pp. 42-44). This pedagogical approach 
seems dependent on the presence of students who either already have the targeted 
knowledge or who are at the point of formulating the idea asked for by the teacher. 
Of course, many students in a given class may not yet be at that point. Furthermore, 
students might not tell in a way that is productive for the rest of the class or in a 
way that moves the class forward toward any helpful mathematical goals. The 
greater conceptual and pedagogical knowledge that teachers bring to the discussion 
can make a positive difference in terms of presenting new information in ways that 
enable students to work with those ideas. 

Judicious telling. In a second approach, teachers act primarily as facilitators and 
resort to telling only occasionally. Judicious telling allows teachers to remain 
focused on students' mathematics while occasionally introducing new information, 
such as conventional notation or terminology, different representations, coun- 
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terexamples to students' ideas, or the articulation of a student's solution process 
(Ball & Chazan, 1994; Driver, 1995; Smith, 1996). In the judicious telling approach, 
telling actions are particularly encouraged in terms of teaching critical vocabulary, 
rules, and conventional norms in mathematics when absolutely necessary 
(Rittenhouse, 1998). An important feature of the judicious telling model is that the 
teacher is no longer viewed as the sole source of knowledge, but still has some 
freedom to introduce new knowledge into the classroom. 

Expanded telling actions. Other researchers have begun to address the telling 
dilemma by rethinking what it means to tell. For example, Chazan and Ball (1999) 
suggested a middle ground between telling and not telling by expanding the defi- 
nition of telling to include the following teaching actions: (a) introducing conven- 
tional terminology, (b) reminding students of a conclusion on which they have 
already agreed, (c) rephrasing students' comments for the whole class, (d) telling 
students that an idea is unclear, (e) challenging students' ideas when they reach a 
mathematically incorrect consensus, (f) managing noncontent related behavior, (g) 
changing the focus of a discussion, and (h) "inserting a new voice" via questions 
and comments. In a similar way, Hiebert et al. (1997) expanded the definition of 
telling to include sharing mathematical conventions, suggesting alternative solu- 
tion methods, introducing more clear or efficient recording techniques, and artic- 
ulating ideas in students' solution methods. They argued that telling is legitimate 
if it does not take fundamental agency for making sense away from students: 

We agree with Dewey that the teacher should feel free, and obligated, to share relevant 
information. Too much information is being shared only if it is interfering with oppor- 
tunities for students to problematize mathematics. In other words, information can and 
should be shared as long as it does not solve the problem, does not take away the need 
for students to reflect on the situation and develop solution methods that they under- 
stand. (p. 36) 

Why Reformulate Telling? 

Rather than simply including traditional telling in an expanded set of teaching 
actions, as indicated by the judicious telling approach, we argue instead for a 
rethinking of the conceptual roots of telling. Specifically, we reformulate telling 
in three ways: (a) in terms of the function rather than the form of teachers' commu- 
nicative acts, (b) in terms of the conceptual rather than the procedural content of 
the new information, and (c) in terms of its relationship to other actions rather than 
as an isolated action. By reformulating telling across these dimensions, we also 
extend the expanded telling approach by legitimizing the pedagogical action of 
directly conveying concepts and ideas. 

Form versus function. In the judicious telling approach, telling is defined in terms 
of the form of the teacher's utterance; traditional telling occurs when teachers 
make declarative statements. However, it is possible for teachers to use a series of 
questions in such a way that the questions actually tell. For example, teachers can 
"tell" their students how to perform procedures by "funneling" students toward the 
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correct answer via a tightly guided sequence of specific questions (Bauersfeld, 1980; 
Wood, Cobb, & Yackel, 1995). In contrast, declarative statements may sometimes 
question more than they tell. Teachers can make statements that highlight contra- 
dictions in students' ideas, provoke new ways of thinking about ideas that lead to 
new questions, or otherwise encourage student explanations. Thus, defining telling 
in terms of form alone does not account for the times when questions tell and declar- 
ative statements question. 

In our effort to find an alternative basis for defining telling, we looked for a 
common characteristic across the dozen or so pedagogical actions identified by other 
researchers as expanded telling actions (Chazan & Ball, 1999; Hiebert et al., 1997). 
In each case, the teacher seemed to take an assertive or proactive action, and in many 
cases, the teacher made a substantive contribution that influenced the direction of 
the conversation. However, the actions fulfilled a range of pedagogical functions, 
from developing ideas and strategies that originated with students to managing 
general classroom behavior. 

A few actions seemed to fulfill a function closely related to telling, namely, that 
of introducing new information. These actions include introducing conventional 
terminology, sharing new and alternative solution methods, and suggesting different 
ways of recording information. The action of "inserting a new voice" (Chazan & 
Ball, 1999) might also fit the function of introducing new information into the class- 
room discussion. The authors describe an episode in which a teacher reminded 
students that they had used a different approach in a previous lesson, thus introducing 
information that did not exist in the conversation on that particular day. However, 
the authors do not discuss the direct communication of new concepts that originate 
with the teacher, perhaps because it would appear to be too similar to traditional 
telling. For example, Chazan and Ball (1999) provide an example in which a class- 
room discussion faltered as students argued over the meaning of an average. 
Certainly just telling students how to compute an average would likely have shut 
down the discussion without contributing much to their understanding of the 
concepts related to averages. We would nevertheless like to examine the legitimacy 
of providing new information related to the meaning of concepts such as average. 
Later we elaborate a reformulation of telling in terms of the function of introducing 
new information, in part to validate the type of telling that has historically been most 
difficult to reconcile with constructivism. 

Procedural versus conceptual content. In the judicious telling approach, telling 
is defined in terms of procedural content. Smith (1996) points out that the practice 
of "teaching mathematics by telling" is grounded in a mutually reinforcing system 
of beliefs about mathematics, teaching, learning, and mathematical authority: 

The plausibility of telling depends on the underlying conception that mathematics is a 
fixed and finite collection of procedures for computing answers. Because students do 
not know these procedures, they must derive their knowledge from teachers. As a result 
of teachers' reliance on step-by-step procedural display, students are required to listen 
carefully and practice diligently. (p. 391) 
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We argue that telling must be reconceived if a teacher is to tell something with 
conceptual rather than procedural content. By conceptual content, we refer to 
ideas, images, meaning, why a procedure works, one's comprehension of a math- 
ematical situation, and connections among ideas. 

The two teaching episodes presented by Thompson, Philipp, Thompson, and Boyd 
(1994) illustrate the difference between telling procedural versus conceptual content. 
Each of the two teachers opened his lesson with the same mathematical problem: 

At some time in the future John will be 38 years old. At that time he will be 3 times as 
old as Sally. Sally is now 7 years old. How old is John now? 

After the students had worked on the problem and discussed it with a partner, 
each teacher conducted an interactive discussion. At one point during the discus- 
sion, Teacher 1 told procedural content by reviewing the long-division algorithm. 
In contrast, Teacher 2 told conceptual content by providing information regarding 
the relationship between Sally's age and John's age (specifically that the multi- 
plicative comparison or ratio of their ages does not remain constant over time). 
Although Teacher 1 spoke in terms of numbers and arithmetic operations, 
Teacher 2 spoke in terms of measurable attributes of objects in the situation and 
of relationships among quantities, contrasting the invariant additive comparison 
of ages over time with the varying multiplicative relationship between ages over 
time. It is not difficult to imagine differences in the nature of the ideas that 
students could construct from these two types of information. 

If telling actions differ when the teacher intends to develop concepts, then these 
actions will require further articulation, just as pedagogical acts related to 
listening and leading classroom discourse have been differentiated into a range 
of actions, each being more fully developed. Instead of focusing only on when 
to tell, we must also address how to tell, what to tell, and why. 

Isolated action versus interrelated actions. From a constructivist perspective, 
"all learning involves the interpretation of phenomena, situations, and events, 
including classroom instruction, through the perspective of the learner's existing 
knowledge" (Smith, diSessa, & Roschelle, 1993, p. 116). As a result, we argue 
that conveying new information is profitably followed by a pedagogical action 
intended to ascertain how students interpret the information. Furthermore, deci- 
sions to tell are not made in isolation from students, but rather unfold in response 
to the dynamics of the classroom. Telling is often preceded by the teacher gath- 
ering information about students' thinking before making a judgment about 
whether to shape students' ideas further or to introduce new information. 
However, once the teacher engages in telling, he or she then steps back to assess 
what sense the students have made of the new information. By considering 
telling as part of a system of actions, we focus attention on the development of 
the students' mathematics rather than on the communication of the teacher's 
mathematics. 
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A REFORMULATION OF TELLING AS INITIATING 

Definition of Initiating 
We define initiating as the set of teaching actions that serve the function of stim- 

ulating students' mathematical constructions via the introduction of new mathe- 
matical ideas into a classroom conversation. Redefining telling in terms of the func- 
tion of the teacher's utterance in the classroom addresses the limitations that we 
previously identified with defining telling in terms of the form of the communica- 
tive act. Three related features influence the function of an utterance: the teacher's 
intention, the nature of the teaching action, and the students' interpretations of the 
action. By defining initiating in terms of its function in the classroom, one must 
accept some degree of uncertainty-it is not possible to ascertain the function of 
initiating actions with complete conviction. However, it is frequently possible to 
reasonably infer the likely function an initiating action plays, as we will demon- 
strate below. Additionally, we view this uncertainty as a necessary trade-off for 
reformulating telling in terms of its function rather than its form. 

Intention. With traditional telling, the intention is typically that students will repro- 
duce a procedure or a definition. Confrey (1990) stated, "When one applies construc- 
tivism to the issue of teaching, one must reject the assumption that one can simply 
pass on information to a set of learners and expect that understanding will result" 
(p. 109). Thus, with initiating, the goal is not the internalization and/or verbal repro- 
duction of a fixed and unitary concept. Instead, when a teacher introduces a new 
idea into the conversation, he or she recognizes that the idea will be interpreted in 
multiple ways. Furthermore, when a teacher engages in initiation, his or her general 
intention is to prompt coherence and sense making, rather than to induce the repro- 
duction of a procedure or a definition. Because the focus of initiating is on concep- 
tual rather than procedural content, the teacher introduces ideas, images, connec- 
tions, and underlying meaning for mathematical symbols, rather than procedures. 
Teachers may have a range of specific intentions for different initiating acts. For 
example, a teacher may intend to create a space in which students can engage with 
and further develop the new ideas that are introduced. As a second example, a teacher 
may intend to provoke disequilibrium in students' thinking by providing new 
information or a counterexample, thus opening the possibility for the reorganiza- 
tion of students' schemas. 

Action. Teachers' intentions can be instantiated pedagogically in a variety of ways. 
Initiating includes, but is not restricted to, the following actions: 

1. Describing a new concept (which can include an idea, the meaning associated 
with a mathematical symbol, why something works, an image, a relationship, 
or connections among ideas or representations) 

2. Summarizing student work in a manner that inserts new information into the 
conversation 

3. Providing information that students need in order to test their ideas or generate 
a counterexample 
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4. Asking students what they think of a new strategy or idea (perhaps from a 
"hypothetical" student) 

5. Presenting a counterexample that the teacher has not seen any students introduce 
and thinks no one will 

6. Engaging in Socratic questioning in an effort to introduce a new concept 
7. Presenting a new representation 

Any given action can take many forms and can be declarative or interrogative in 
nature. Furthermore, interrogatives can range from targeted funneling to posing a 
more open-ended question. The list of initiating actions above is not exhaustive. 
We illustrate a range of actions later in this article by including empirical episodes 
of Actions 1-3. By describing these actions in context, we hope to demonstrate that 
they can occur in settings that are compatible with a constructivist philosophy and 
the goals of the reform movement. 

Interpretation. We believe that intention and action are insufficient to define the 
function of initiating. One could introduce new information that is beyond students' 
ability to understand, in which case the action would serve little productive func- 
tion in the classroom. Students must engage with the new information in some way 
in order for an action to count as initiating. Thus, students should be conceptually 
able and motivated to make sense of the teacher's utterance. Engagement is not as 
stringent a requirement as effectiveness. We focus on engagement to ensure that 
the teacher does not talk past the students. We maintain that one should not think 
of an initiating act as one that concludes with the end of the teacher's utterance. 
Because the purpose of initiating is to stimulate novel mathematical thoughts for 
students, one must consider students' responses to the teacher's initiating action. 

Situating Initiating in Conjunction with Eliciting 

One typically conceives of traditional telling as an isolated act and defines it in 
terms of what the teacher does. In contrast, we conceive of initiating in terms of 
students' development, even though the new ideas originate with the teacher rather 
than with the students. Thus, we consider initiating actions not in isolation, but in 
conjunction with another teacher action. In particular, initiating is often followed 
by eliciting-an action intended to ascertain how students interpret the informa- 
tion introduced by the teacher. Continuing to define pedagogical actions in terms 
of function rather than form, we consider eliciting to be the set of teaching actions 
that serve the function of drawing out students' mathematical ideas. 

Examples of eliciting. Eliciting occurs when the teacher's actions serve the func- 
tion of drawing out students' images, ideas, strategies, conjectures, conceptions, and 
ways of viewing mathematical situations. For the purposes of this article, we do not 
include the action of determining whether students can recite steps in a procedure 
as eliciting, although that may indeed be an important pedagogical action at times. 
Instead we restrict eliciting to the set of actions aimed at identifying students' 
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concepts. We adhere to this restriction because we only intend to examine those 
pedagogical actions concerned with the generation of conceptual growth rather than 
procedural competence. 

The intention to elicit might be to gain insight into what makes a problem diffi- 
cult for students or to determine their understanding of a particular idea. The action 
of eliciting cannot be conceived only in terms of asking a question, since questions 
may at times serve a telling role. Instead, eliciting actions occur when the teacher 
arranges for situations in which students articulate, share, discuss, justify, reflect 
upon, and refine their understanding of the mathematics. The teacher may elicit by 
posing a carefully designed task or by asking one student to react to the ideas of 
another student. In some classrooms, the social contract between the teacher and 
the students might result in students interpreting the teacher's eliciting act as a probe 
for recitation or mimicry of the teacher's ideas. In this case, the teacher's attempt 
would have failed to function as a genuine elicitation. Students must respond with 
their own ideas for an action to count as eliciting. 

The relationship between initiating and eliciting. In order to promote students' 
conceptual development, we believe initiating is most profitably used in conjunc- 
tion with eliciting. While the agenda framing this development is initially the 
teacher' s, it is iteratively modified in response to the progress of the discussion in 
order to accommodate students' prior and emerging understanding. Initiating and 
eliciting acts introduce ideas from different sources. If a mathematical idea origi- 
nates with the teacher, he or she is operating in an initiating mode. If an idea orig- 
inates with the student, then the teacher is likely operating as an elicitor. 

Because many actions serve dual purposes, it is not always possible to determine 
whether an action is best described as initiating or eliciting. This uncertainty is 
compounded by the fact that intentions can be difficult to infer. In addition, the two 
categories of initiating and eliciting are not intended to include all teaching actions. 
However, our purpose is neither to describe all possible teaching actions nor to 
develop a research coding tool to categorize them. Rather, our goals are to refor- 
mulate telling, elaborate and develop several initiating actions in context, and 
situate telling within a framework of closely related categories of teaching actions. 
Initiating and eliciting interact together; they are not mutually exclusive cate- 
gories. Rather than describing a simple dichotomy such as "tell or not tell," we show 
how both categories of actions mutually influence one another as they occur in 
concert to foster students' conceptual growth in mathematics. 

How Initiating Can Support Learning 

We claim that initiating can facilitate students' conceptual growth. From a 
constructivist perspective, learning is viewed as conceptual transformation or 
restructuring: 

The learning theory that emerges from Piaget's work can be summarized by saying 
that cognitive change and learning in a specific direction take place when a scheme, 
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instead of producing the expected result, leads to perturbation, and perturbation, in turn, 
to an accommodation that maintains or reestablishes equilibrium. (von Glasersfeld, 
1995, p. 68) 

Because learning can be triggered by a disequilibrating experience for the learner, 
one can conceive of an associated teaching action of creating provocations that could 
be perturbatory for students, leading them to make accommodations in their knowl- 
edge. Initiating in the form of asking students what they think of a new idea from 
a "hypothetical" student or presenting a heretofore unmentioned counterexample 
could create disequilibrium for students. According to Steffe and D'Ambrosio 
(1995), creating such provocations requires a deep appreciation by teachers of their 
students' mathematical knowledge. 

Later in his research program, Piaget added a second mechanism of equilibra- 
tion-reflective abstraction'-in an effort to explain how we come to "know about 
our own processes of knowledge, or about the coordinations of our own actions" 
(Campbell, 2001, p. 4). Our analysis of the empirical episodes presented later in 
this article suggests that the initiating actions from these episodes may be more 
closely related to this second learning mechanism. Reflective abstraction refers to 
the processes of creating mental records of experience, comparing those records, 
and identifying commonalties among the mental records related to the learner's goals 
(von Glasersfeld, 1995). 

Arguing that reflective abstraction is underspecified for guiding pedagogical 
actions in mathematics teaching, Simon, Tzur, Heinz, and Kinzel (2004) articulate 
a mechanism that they call "reflection on activity-effect relationships" as an elab- 
oration of reflective abstraction. First, the learner attends to the effects of his 
activity relative to his goal. Then he creates mental records of this experience. The 
unit of experience being recorded is an enactment of his activity associated with 
its effect. The learner sorts the records in relation to his goal and compares those 
records that were grouped together, identifying relationships among the activity and 
effects. Eventually, the relationship can be treated as a mental action on which the 
learner can operate. Mathematics is initially built from activities such as counting, 
folding, ordering, and comparing (Confrey, 1990). Then the learner progresses 
through different levels of abstraction of his or her actions, including (a) isolating 
it in the experiential flow and grasping it as a unit, (b) registering it in working 
memory so that it can be re-presented in absence of "concrete" materials, and (c) 
taking the result of actions as a stand-in for the action itself (Steffe & Cobb, 1988). 

We hypothesize that initiating can support reflective abstraction in at least two 
ways. First, when students have reached the stage at which they are able to treat 
constructed regularities as conceptual objects, they may be able to listen actively 
to new information and use it as a mental object upon which to operate, reflect, and 

1 The French term "abstraction rflechissante," used by Piaget, is translated as "reflective abstrac- 
tion," "reflecting abstraction," "reflected abstraction," and "reflexive abstraction." We use the term 
reflective abstraction, because it is the term most frequently used by mathematics educators. 
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coordinate with other mental objects. At this point, it may be inefficient and unnec- 
essary to have students remain focused on concrete activity (Thompson, 2000). 
Furthermore, presenting conceptual content may in fact support the higher level of 
reflective abstraction at which the student is operating. 

Whether initiating is appropriate or fruitful depends upon whether students have 
sufficient prior experiences with which to make sense of the new ideas. Schwartz and 
Bransford (1998) conducted a study in which college students engaged in "readiness 
activities," which consisted of analyzing and contrasting simplified experimental 
designs with data from classic psychology experiments. Some of the students then 
attended a lecture addressing the psychological principles related to the phenomena 
highlighted in the experiments. The students who had engaged in the readiness activ- 
ities and attended the lecture performed significantly better on a task related to the 
lecture content than both the students who only engaged in the readiness activities 
and the students who only attended the lecture. According to Schwartz and Bransford, 
the teacher's speech was meaningful for the students who had participated in the readi- 
ness activities because they could interpret it as relevant to knowledge that they had 
already developed. Alternatively, when telling occurs without readiness, "the primary 
recourse for students is to treat the new information as ends to be memorized rather 
than as tools to help them perceive and think" (p. 477). Thus, pedagogical decisions 
about initiating should be informed by what Simon (1995) refers to as the teacher's 
hypotheses about students' knowledge and learning trajectories. 

We hypothesize that initiating actions may also support the aspect of reflective 
abstraction that involves focusing on and isolating mathematical properties or regu- 
larities from the experiential flow. For example, a teacher may relocate part of a very 
complex task onto herself by providing new information, in order to enable students 
to focus on a smaller part of the phenomenon and engage in mental activity with that 
component. This might serve to usefully reduce the number of features a student must 
attend to within a given problem, thus allowing students to productively explore certain 
aspects of a problem without becoming overwhelmed. As an alternative, a teacher 
might introduce a new idea into the conversation in order to help set a conceptual goal 
and focus for the students' subsequent explorations, in essence creating a conceptual 
space in which students develop new ideas. According to Lobato, Ellis, and Mufioz 
(2003), these initiating actions can be seen as focusing phenomena, which refer to the 
multiple agents in the instructional environment that contribute to the activity of 
directing students' attention toward particular aspects of mathematical activity and 
away from others. We will further describe the ways in which initiating could support 
processes of reflective abstraction through the three data episodes below. 

THE EPISODES AND TEACHING EXPERIMENTS 

The three empirical episodes that will be analyzed in the next section exemplify 
aspects of initiating in conjunction with eliciting. The episodes illustrate Initiating 
Actions 1-3, respectively, and demonstrate a variety of patterns with initiating and 
eliciting. Episode 1 (the meaning of division in a rate situation) portrays a cyclic 
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pattern of initiating and eliciting. Episode 2 (the comprehension of steepness in a 
wheelchair ramp situation) portrays an extensive series of eliciting acts followed 
by an initiating act. Episode 3 (the creation of ratio as a measure of steepness of 
a ramp) portrays a pattern of eliciting followed by initiating and eliciting occur- 
ring together. The episodes described below are not short excerpts of a transcript 
illustrating one action. Instead, they are presented in narrative form in order to 
address all aspects of the function triad-intention, action, and interpretation. Each 
episode is described in detail in order to develop different ways in which initiating 
and eliciting can interact in the classroom. This way we can illustrate how the peda- 
gogical actions are used to support students' conceptual development. 

The episodes were selected from two different teaching experiments, a summer 
teaching experiment and an after-school teaching experiment. In both cases, the 
first author was the teacher. We chose to rely on teaching-experiment data rather 
than regular classroom data primarily because we can make legitimate claims 
about the teacher's intention. Specifically, we were able to rely on detailed field 
notes regarding the goals for each lesson when considering intention. 

The summer teaching experiment included 9 high school students split evenly 
across Grades 8, 9, and 10. We recruited average-performing students earning Bs 
or Cs in their regular mathematics classroom. The sessions consisted of 30 hours 
of instruction over 2 weeks, conducted in a university computer lab (for details 
of the study, see Lobato & Thanheiser, 2000, 2002). The after-school teaching 
experiment included 8 students, earning grades A-C, recruited from a ninth-grade 
Algebra I class. It consisted of hour-long sessions held weekly after school for a 
total of 30 lessons, in which students met in pairs. The major mathematical goal 
of both teaching experiments was to help students develop a robust and general- 
izable understanding of rates of change. 

We had several goals in performing the analysis of the teaching episodes. 
First, we intended to illustrate a range of initiating actions. However, we soon 
discovered that the relationship between the data analysis and our conceptual 
framework was reflexive. Specifically, our analysis informed revisions of the 
conceptual framework as well as the particular list of initiating actions. By 
conducting this analysis, we were able to establish the legitimacy and value of 
reformulating telling in terms of function. The analysis helped us examine the 
ways in which initiation can support conceptual development, and it demonstrated 
the value of conceiving of initiating in relationship to eliciting rather than as an 
isolated action. 

In our analysis of the teaching episodes, we elaborate a variety of patterns of 
interaction between eliciting and initiating. These patterns differ from other well- 
known discourse patterns. For example, Mehan (1979) identified a dominant 
classroom discourse structure of "Initiation-Reply-Evaluation" (I-R-E). In this 
structure, the teacher initiates by asking a question about a known fact or idea, 
students reply with answers, and the teacher evaluates the responses for correct- 
ness. The I-R-E pattern suggests that teachers often guide students to correct 
responses by evaluating their answers. Bowers and Nickerson (2001) found two 
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other interaction patterns through an analysis of a course for prospective math- 
ematics teachers. In the "Elicitation-Response-Elaboration" (E-R-E) pattern, 
teachers elicit a response, students respond, and teachers elaborate on the 
response. The instructor's elaboration suggests an attempt to encourage deeper 
conversations. In the "Proposition-Discussion" (P-D) pattern, a student or a 
teacher makes a proposition, and then other class members discuss it. 

Our use of the term "initiating" differs from these existing uses. In Mehan's 
I-R-E pattern and in Bowers and Nickerson's E-R-E pattern, a teacher initiates 
a question that has a known answer. Neither our "initiating" nor "eliciting" acts 
address these types of teacher questions; our use of "initiating" is limited to when 
teachers introduce new mathematical ideas into a conversation. Although this 
may occur in the I-R-E or E-R-E patterns, the terms do not address a teacher's 
deliberate attempt to convey new information. Mehan also distinguished between 
"product elicitations," in which a series of questions are designed to elicit 
correct, factual responses, and "process elicitations," a series of questions 
designed to elicit learners' views and opinions. The latter is similar to our use 
of "eliciting," in which teachers engage in actions that draw out students' math- 
ematical ideas. In contrast to Mehan's discourse structures, however, our initi- 
ating-eliciting framework serves as a way to address specific teaching actions 
in terms of their function in the classroom when teachers aim to promote concep- 
tual development. 

ANALYSIS OF THREE INSTRUCTIONAL EPISODES 

Episode 1: Initiating by Describing a New Concept 

We present this episode with three goals in mind. First, we illustrate the initiating 
action of describing a new concept (Action 1 from the list above) in order to 
explore the legitimacy of directly conveying concepts and ideas within a construc- 
tivist perspective. Second, we demonstrate our proposition that initiating is more 
productively conceived as an action to be performed in conjunction with eliciting. 
This particular episode demonstrates a pattern of eliciting both preceding and 
following initiating (an E-I-E pattern). Third, we demonstrate how initiating and 
eliciting actions are informed by the teacher's hypotheses about the student's 
knowledge and trajectory for conceptual growth. 

Background: The teacher's understanding of the student's understanding. This 
episode is drawn from Session 9 in the after-school teaching experiment in which 
the first author tried to facilitate the understanding of division in rate situations for 
a ninth grader, Carissa.2 Prior to the teaching experiment, we assessed the partici- 
pant's understanding by using the following task in a semistructured interview: 

2Carissa is a gender-preserving pseudonym, as are all other participants' names reported in this 
article. 
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Suppose you collected 16 ounces of water over a period of 24 minutes from a leaky 
faucet. How fast is the faucet leaking?3 

One way to understand this situation conceptually is to mentally join the values 
of the two quantities into a composed "16 oz in 24 min" unit (Lamon, 1995). By 
iterating (replicating the unit to produce another composed unit) or partitioning 
(separating the unit into a specified number of equal parts), we obtain values that 
represent the same dripping rate (e.g., 4 oz in 6 min). To determine the number of 
ounces that drip in 1 min, we mentally partition the 16:24 unit into 24 equal parts, 
which involves partitioning both the 16 oz and the 24 min into 24 sections. 
Determining the amount in each section can be accomplished through division by 
24. The concept of connecting partitioning with the arithmetic operation of divi- 
sion is the mathematical focus of Episode 1. 

Carissa did not appear to understand these ideas prior to the teaching experiment. 
In response to the leaky faucet task, Carissa calculated 24 + 16 rather than 16 + 24 
"because it was higher, the 24 min," which suggests a variation of the "division 
makes smaller" conception (Greer, 1992). She did not interpret 1.5 correctly as 
minutes per ounce but rather explained that "it's dripping 1.5 oz" and that she was 
not sure how much time it took "to do the 1.5 oz." This suggests that she used the 
measurement units as a label rather than linking them to the mental operation of 
partitioning. It also suggests a lack of understanding of the effect of dividing. 
Carissa chose the operation of division through a process of elimination based upon 
number size (as reported in Sowder, 1995), rather than based on an understanding 
of the situation. 

In the eight sessions of the teaching experiment leading up to Episode 1, Carissa 
explored speed situations using the simulation software MathWorlds (Roschelle & 
Kaput, 1996), developed for the SimCalc Project. During this time, Carissa (a) 
formed composed units of distance and time such as "10 cm in 4 s," (b) created 
her own line segment representations of composed units, (c) iterated composed 
units to create other "same speed" values, (d) linked iteration to multiplication, 
(e) demonstrated an understanding of the partitive meaning for division by correctly 
creating an appropriate word problem for a given division problem, and (f) created 
unit ratios by dividing time and distance quantities by the same amount. For 
example, in Session 8, the teacher asked Carissa to find how far a duck (one of 
the characters in MathWorlds) traveled in 1 s given that the duck covered 7 cm in 
3 s. Carissa calculated 7 + 3 and 3 + 3 to determine that the duck traveled 2.33 cm 
in 1 s. She appeared to understand that dividing produces the distance traveled 
per second. However, it was less clear whether Carissa had connected dividing by 

3We posed an ambiguous question because we were interested in assessing students' conceptions of 
measures of rates. We would have considered an answer of 16 oz in 24 min, with an appropriate expla- 
nation, as correct. However, all of the interview participants interpreted this question as a prompt for a 
unit ratio. We also used the leaky faucet context for preceding tasks and communicated that the faucet 
was dripping at a constant rate. 
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3 with partitioning 7 cm and 3 s into three equal parts. Consequently, in Episode 1 
(Session 9 of the teaching experiment), the teacher tried to assess Carissa's under- 
standing of the connection between dividing and partitioning. 

Eliciting. In order to elicit Carissa's meaning of division, the teacher drew a line 
diagram (based on those that Carissa developed) to represent the duck traveling 
7 cm in 3 s (Figure 1) and asked, "To find how far he walked in 1 s, you divided 
the 3 s by 3 and the 7 cm by 3; so can you show the dividing by 3 in your picture?" 
Carissa appeared to understand the question but responded by partitioning the 
segment into seven parts rather than three parts. When the teacher asked Carissa 
why she split the segment into seven parts, Carissa responded, "Because I was gonna 
show where they divided where ... like, um, like right here that's one [pointing to 
the first tick mark as shown in Figure 2] and the 2.33 will go here [pointing between 
the second and third tick marks as shown in Figure 2]." The teacher suspected that 
Carissa was attempting to mark her "answer" of 2.33 cm in 1 s on the number line 
but could not do so unless she first marked each centimeter on the segment, as she 
had seen on the computer screen. This might explain why she partitioned the 
segment into seven equal parts. The teacher also concluded that Carissa had not asso- 
ciated division by 3 with partitioning the segment into three equal parts and that 
Carissa was applying a counting scheme rather than a partitioning scheme. 

Initiating. To address this issue, the teacher initiated by describing the concept 
that dividing by 3 is connected with partitioning the 7 cm in 3 s segment into three 
equal parts: 
Teacher: Now take a look at this [draws a new 7 cm in 3 s segment and partitions it 

into three equal parts, as shown in Figure 3]. Do you see how this is now 

3 sec 

7 cm 

Figure 1. Teacher's diagram of a duck's journey of 7 cm in 3 s 

1 sec 
I 3 sec 

2.33 cm 
7 cm 

Figure 2. Carissa's attempt to show division by 3 in the diagram 
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split into three parts? This is one part [circles the first section from the left 
in the diagram], and one part [circles the second section], and one part 
[circles the third and final section]. One thing that dividing by 3 does is 
split this number line or drawing into three equal parts. How far had you 
gone and in how many seconds in each part? 

Carissa: The first part would be 2.33 cm and 1 s. 
Teacher: Exactly. See this [points to the first section in the diagram] is one third of 

this whole 3 s, and one third of 3 s is 1 s, and one third of 7 cm is 2.33 cm. 
Does that help you see where the dividing by 3 is? 

Carissa: Yeah. 
Teacher: Your strategy was really good. I just wanted to get it connected with the 

picture so you could see why you were dividing. 

3 sec 

7 cm 

Figure 3. Teacher's representation of the connection between dividing by 3 and partitioning 
the segment into three equal parts 

Because our goal is to reformulate telling by examining its function in the instruc- 
tional environment, we examine the teacher's intention and action for the initiating 
act as well as the student's interpretation of the action. The last line of the excerpt 
provides some evidence that the teacher' s intention was to help Carissa connect divi- 
sion with partitioning as opposed to making a decision to divide based on number 
size alone, as Carissa had done in the interview. The content of the "telling" act was 
conceptual rather than procedural in nature. The teacher did not provide Carissa with 
a step-by-step method for determining which number to divide by; instead, she 
presented an idea regarding the connection between partitioning and dividing. For 
the particular initiating action, the teacher employed both targeted questions and 
declarative statements. Despite the fact that the teacher posed some questions, we 
maintain that she was initiating, not eliciting. 

The teacher believed that Carissa would be able to engage with the content of the 
initiating act for the following reasons. Carissa had been able to generate an appro- 
priate word problem for 6 + 3 by divvying six children among three parties, which 
suggests an understanding that partitioning into three equal groups is connected with 
division by 3. When asked what division means in real life, Carissa had responded, 
"If you go to a closer store that is halfway to a farther store, you're dividing by 2," 
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which indicates some understanding of the relationship between partitioning and divi- 
sion in a distance model. This suggests that Carissa may have reflected upon previous 
partitioning activities and formed a relationship between partitioning and dividing 
that she could unpack and use in the speed situation. If Carissa had those structures 
in place, and if she had sufficiently reflected on those ideas, then telling her about 
the meaning of dividing in the speed situation might allow her to make the connec- 
tion back to her existing structures. To explore the function of the initiating action, 
we turn to an examination of Carissa's interpretation of the action. 

Eliciting. The teacher did not assume that Carissa had constructed the same 
meaning as the teacher's. Consequently, she elicited Carissa's interpretation of the 
initiated idea by posing a carefully designed task (Henningsen & Stein, 1997; 
NCTM, 1991). The teacher drew a segment to represent a frog walking 16 cm in 
4 s (Figure 4), told Carissa that she cut the segment into eight equal-sized sections, 
and then asked how far and for how long the frog walked in the circled section of 
the drawing. The teacher partitioned the segment into some number of sections other 
than four, because she wanted to know whether Carissa would calculate 16 + 4, indi- 
cating a strategy of operating on the two numbers provided in the problem state- 
ment, or whether Carissa would calculate 16 + 8, indicating an ability to perceive 
the line as partitioned into eight equal parts and an ability to connect partitioning 
by 8 with dividing by 8. 

Carissa calculated 16 + 4 = 4 and 4 + 4 = 1 and then wrote 4 cm in 1 s near the 
first tick mark in the drawing. She iterated the "4 cm in 1 s" unit three times (see 
Figure 5). When she found that she had already reached 16 cm in 4 s by the halfway 
mark in the drawing, she knew something was wrong and gave up, complaining that 
she did not understand. 

16 cm 

4 sec 

How far did the frog travel in the circled section, and how much 
time did it take him? 

Figure 4. Task used to elicit Carissa's interpretation of the content of the teacher's initiating 
action 

16 cm 4 3 2 1 

4 sec 16 12 8 4 

How far did the frog travel in the circled section, and how much 
time did it take him? 

Figure 5. Carissa's response to the task posed in Figure 4 
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Determining the function of the initiating action. Discerning how the initiating 
action ultimately functioned in this instance is complicated. At the end of 
Session 9, the teacher repeated another E-I-E cycle with similar results. This 
suggests that, contrary to the teacher's hypothesis, Carissa did not possess the 
conceptual structures needed to actively construct with the information presented. 
However, this does not mean that Carissa did not engage with the substance of 
the initiating at some level. We provide a brief overview of what transpired over 
the next two sessions and then return to a discussion of the function of the initi- 
ating action. 

In Session 10, the teacher elicited that Carissa had connected division by 2 with 
halving a line segment. The teacher built on this prior knowledge by asking 
Carissa to reflect on the effect of her activities of repeatedly halving the number 
line (and correspondingly dividing by 2) in order to develop a more general 
connection between partitioning and dividing. For example, the teacher drew a 
line segment representing 12 cm in 2 s, partitioned the segment into four equal 
parts and asked Carissa how far the character traveled and in how much time for 
one of the parts. Carissa calculated 12 + 2 and 2 + 2 to obtain 6 cm in 1 s, located 
6 cm in 1 s at the midway point on the number line, and halved again to obtain 
the answer of 3 cm in 0.5 s. The teacher prompted Carissa to reflect on the effect 
of these two actions on the entire number line. Carissa appeared to connect parti- 
tioning the segment into 4 equal parts with dividing 12 cm by 4 and 2 s by 4. 

During Sessions 10 and 11, the teacher relied primarily on eliciting actions. 
However, at the outset of Session 10 she initiated the general idea that arithmetic 
operations are connected with actions represented in drawings, without speci- 
fying any particular connection: 

Now what I am trying to help you do is connect these um. ... These are called 
arithmetic operations-adding, subtracting, multiplying and dividing. These 
are things you calculate. And I want to help you connect those with your 
picture, because I think this will really help you. 

This initiating act set the stage for the teacher to ask the following types of ques- 
tions after each activity: "How many parts did you cut your line into?" "How is that 
connected to the calculation you performed over here?" We hypothesize that by 
providing the information that a connection between partitioning and dividing 
exists, the teacher provided a conceptual space that Carissa could explore in a goal- 
oriented manner. 

Carissa's work in Session 10 showed some engagement with the teacher's idea, 
and the acts of initiating in Sessions 9 and 10 did not appear to have shut down 
Carissa's own thinking. For example, Carissa responded to the task shown in 
Figure 6 by calculating 14 + 2 and 5 + 2, splitting the drawing into two equal parts, 
and labeling the midpoint as 7 cm in 2.5 s. She then tried to partition the first segment 
into 2.5 sections but abandoned that effort when her attempt resulted in three 
sections. She started over and said she should cut the segment into five parts. Instead 
she halved the line twice, thus showing the dominance of halving. When Carissa 
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14 cm 

5 sec 

Suppose the frog walks 14 cm in 5 sec. I want to know 
how far he walks in 1 s, but to figure this out, I don't want 
you to calculate anything yet. Just think about your picture. 
How could you split up this picture to help you find how 
far the frog goes in 1 s? 

Figure 6. Task used to elicit Carissa's connection between partitioning and dividing 

realized that she had only cut the segment into four parts, she created a new 
drawing, cut the segment into five parts, calculated 14 + 5 to obtain 2.8, checked 
by iterating, and reported that the frog traveled 2.8 cm in 1 s. Thus, Carissa's work 
shows an emerging connection between partitioning and dividing as well as a 
reliance on her own halving-dominated strategies. 

By the end of Session 11, Carissa no longer relied on halving and appeared to 
have formed a more general connection between partitioning and dividing. At the 
beginning of Session 12 (after a 3-week break), the teacher assessed Carissa's under- 
standing by returning to the original interview question set in a speed context: 
Suppose the clown walks 16 cm in 24 s, how fast is he walking? Carissa demon- 
strated multiple solutions. She determined (a) that the clown walked 0.66 cm in 
1 s, by finding 24 + 24 and 16 - 24; (b) that the clown took 1.5 s to go 1 cm, by 
finding 24 + 16 and 16 + 16; and (c) that 16 cm in 24 s also indicated the clown's 
speed. When asked to draw a picture to represent any of her responses, Carissa drew 
the diagram shown in Figure 7 and gave the following explanation, indicating that 
she had adopted the language of "cutting" and had formed a connection between 
partitioning and dividing. 
Teacher: What did you do? 
Carissa: I drew 16 lines. 

2 cm 4 cm 6 cm 8 cm 10 cm 12 cm 14 cm 
3 sec 6 sec 9 sec 12 sec 15 sec 18 sec 21 sec 

1 cm 3 cm 5 cm 7 cm 9 cm 11 cm 13 cm 15 cm 
1.5 sec 4.5 sec 7.5 sec 10.5 sec 13.5 sec 16.5 sec 19.5 sec 22.5 sec 

0 24 sec 
16 cm 

Figure 7. Authors' reconstruction of Carissa's diagram of a clown's journey of 16 cm in 
24 s divided by 16 
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Teacher: 16 lines. Okay, what were you, um, what does the 16 lines mean? 
Carissa: That I was dividing it by 16. 
Teacher: Okay, what is it that you were dividing? 
Carissa: Um, I was dividing by 16 to get the centimeter. 
Teacher: What does dividing by 16 mean? 
Carissa: That, um, I'm going to cut it up into 16 parts. 
Teacher: Into 16 parts? 
Carissa: Yeah. 
Teacher: Okay, so what else can you tell me about your drawing? What do the little 

parts represent? 
Carissa: Um, for 1 cm it takes 1.5 s. 

One can legitimately argue that the teacher could have supported Carissa's 
conceptual development without initiating. However, had Carissa been ready to hear, 
as the teacher hypothesized, then it would have been cumbersome and unnecessary 
to insist that she remain at a concrete activity level if she was ready to operate at a 
higher level of reflective abstraction. After conducting a retrospective analysis, we 
hypothesize that Carissa was unable to work with the substance of the first initi- 
ating act because the mental action that she re-presented to herself as she recalled 
prior division situations was that of divvying, which is different from the action of 
cutting. It is possible to conceive of centimeters as a discrete collection, and then 
divvy the centimeters among seconds. This means that one can "hand out" centime- 
ters, one at a time, to a given number of seconds, in much the same way that one 
hands out cookies one at a time, cycling through the number of children until the 
supply of cookies is exhausted. However, it is more natural to rely on cutting actions. 
Thus, we hypothesize that Carissa needed to reflect on the effect of various cutting 
actions before she could imagine a line segment partitioned into a given number 
of parts and before she could reflectively abstract the connection between parti- 
tioning and dividing in the speed setting. 

Despite the fact that Carissa did not engage with the original initiating action the 
way the teacher had hoped, we maintain that initiating was a reasonable action given 
the teacher's model of the student's understanding. Furthermore, it is plausible that 
initiating played a positive role in Carissa' s conceptual development by creating a 
conceptual space in which Carissa could work to develop the particular connection. 
The uniqueness of Carissa' s strategies in Session 10 indicates that initiating did not 
appear to harm Carissa' s sense making. There are real risks associated with telling, 
but these risks arise in large part because telling has been conceived as an isolated 
expression of the teacher's knowledge. Episode 1 illustrates that by using eliciting 
in conjunction with initiating, many of these risks were avoided. 

Episode 2: Initiating by Summarizing Student Work So That New Information Is 
Inserted 

We present this episode as an example of initiating by inserting information (in 
this case, information about mathematical conventions) while summarizing student 
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work (Action 2). The episode also demonstrates a pattern in which initiating occurs 
after a lengthy series of eliciting acts (an E- ... E-I pattern). The episode is drawn 
from the last day of the summer teaching experiment during a 1.5-hour lesson 
designed to help students develop an understanding of slope as a ratio-as-measure 
of the steepness of a wheelchair ramp. Researchers have demonstrated that 
constructing slope as a measure of the steepness of a physical object such as a ski 
ramp or wheelchair ramp is difficult for secondary school students and preservice 
elementary teachers alike (Lobato & Thanheiser, 1999; Simon & Blume, 1994; 
Stump, 2001). Interviews with the participants before the teaching experiment 
indicated that they struggled with this construction as well. 

Eliciting. The teacher began the lesson with the intention of gaining insight into 
why slope as a measure of the steepness of a physical object is difficult for students. 
In order to ascertain students' general comprehension of the situation as opposed 
to their calculational skills, she elicited by posing a task that contained no numbers. 
Specifically, she asked the students to draw two ramps, one steeper than the other, 
in order to elicit students' meaning for "steepness." This was an easy problem for 
students (see Jessica's drawing in Figure 8). When asked to describe steepness, 
students used words like "slantiness," "tilt," and "angle." 

The importance of function: Unintentional initiating. The teacher intended to 
continue eliciting in order to locate the problem areas for students. The first sign 
of difficulty arose when the teacher pointed to one of the ramps that Jessica had 
drawn and asked if the ramp had the same steepness throughout or whether it was 
steeper in places. Six of the nine students reported that the ramp became steeper as 
they imagined climbing up the ramp. The following interchange illustrates one 
student's reasoning: 
Teacher: Where is it steeper? 
Terry: Like right there [to the far right of the ramp]. 

ftp 
Figure 8. Jessica's drawing of two hills, in which one hill is steeper than the other 
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Teacher: Okay, and how do you know it's steeper right there? 
Terry: 'Cause it's like higher up on the angle. 
Teacher: Okay. So being higher up on the angle makes it steeper? 
Terry: Uh, huh. 
Teacher: So is the steepness constantly changing? 
Terry: Yeah. 

The teacher's last utterance was intended to elicit by summarizing, but it goes 
beyond the student's own conceptions. In fact, this question may have functioned 
to initiate a new way to think about the ramp. At the time, the teacher did not realize 
that multiple plausible interpretations of Terry's utterance existed; for example, 
Terry could have meant that the ramp had the same steepness throughout but was 
steeper only at the rightmost point. It is easy for teachers to embed more sophisti- 
cated concepts (e.g., "constantly changing") in prompts intended only to elicit or 
clarify students' understanding. This unintentional initiating may be difficult to 
avoid. The value of sensitizing teachers to the initiating/eliciting distinction is that 
it focuses the teacher's attention on the conceptual sophistication of each statement 
rather than on its linguistic form (declaring versus asking). Because the teacher's 
priority is the elicitation of the students' conceptual understanding, he or she could 
be more likely to recognize inadvertent jumps in conceptual complexity as instances 
of unintentional initiating. This recognition may then trigger further eliciting to 
establish the students' interpretation of the initiating action. 

Eliciting. Because the teacher thought the students were telling her the ramp kept 
getting steeper and steeper as one walked up, she posed the following task to 
perturb this conception: Draw two nonidentical ramps with the same steepness. This 
prompt can be described legitimately as eliciting since it employs a conceptual 
referent no more sophisticated than those already employed by the students. 
Furthermore, the prompt functioned to draw out more information about students' 
comprehension of the situation. 

Students' disagreement over the solution to this problem revealed a great deal 
of information about which quantities they saw as affecting steepness. Jim correctly 
drew the picture shown in Figure 9, but Nathan disagreed, arguing that the ramp 
on the right was steeper because it was higher at one end. Josh also disagreed with 

Figure 9. Jim's drawing of two nonidentical but equally steep ramps 
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Jim but for a different reason, offering that the part of the ramp that one walks up 
was longer for the ramp on the right. Josh may have understood steepness in terms 
of the length of the hypotenuse (if one thinks of the ramp as a triangle); thus, a longer 
hypotenuse implies a steeper ramp. Alternatively, he may have confused steepness 
with some other attribute, such as "work required to climb"; thus, in walking up a 
longer ramp, one is actually working harder. 

When the teacher returned to Jessica's drawing (Figure 8) and asked the students 
what made the ramp on the right steeper, she elicited an informative response from 
Terry. He volunteered that the ramp on the right was steeper because it was higher. 
The teacher thought that it might be possible that the students assumed that taller 
ramps were always steeper. In order to find out, she asked the students to draw a 
ramp that was both shorter and steeper than either of Jessica's ramps. 

A student's requestfor initiation. Before any of the students could respond to the 
task, Nathan requested that the teacher tell them what steepness means: 
Nathan: What's steeper? 
Teacher: That's what we have to decide together. There are a lot of quantities here and 

a lot of things that we are noticing. 
Nathan: But steepness, what does it mean? 
Teacher: That's what we have to decide together. Instead of me just telling you, I think 

you guys have ideas. 

The teacher deliberately refused to define steepness at this point in the conver- 
sation for several reasons. She believed that the students had formed meaning for 
steepness, but was concerned that they may have entangled several other attributes 
with steepness. Recall that with the first task, students described steepness as 
"slantiness" and as "tilt." However, they also appeared to have linked steepness with 
the attribute of "work required to climb" and height. Thus, the teacher wanted the 
students to isolate these multiple attributes before she conveyed the conventional 
knowledge that steepness refers to the slantiness of the object. The teacher's deci- 
sion not to initiate at this time is an important one since the student explicitly recog- 
nized and communicated a need to know (Clarke, 1994). In this case, the teacher 
was aware of other considerations requiring further elicitation before any initiating 
could usefully occur. The next task appeared to accomplish this goal of isolating 
height from steepness for many of the students. 

Eliciting. Terry tried to draw a ramp that was shorter but steeper than the given 
ramps but was unsuccessful (see the ramp on the far left in Figure 10), thus 
suggesting that it may have been difficult for the students to isolate steepness from 
height. When the teacher asked the other students if Terry's ramp was steeper, 
Nathan blurted out, "Oh, I see what you're saying, like this is like going up, up, 
slowly up [gestures with his hand to illustrate an incline that is not very steep] and 
you can have a shorter one that goes shh shh [gestures with his hand to illustrate a 
steep incline with the first 'shh,' and then extends the incline with the second 'shh'] 
like that." Brad then successfully drew a ramp that was shorter yet steeper than one 
of the given ramps, and in the process seemed to isolate steepness from height. When 
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S/eeptr 
Figure 10. Terry's attempt to create a ramp that was steeper but not as high as the ramp on 
the far right 

the teacher asked the students if they agreed with Brad, she noticed that more 
students seemed to be focusing productively on angles and "slantiness" in their 
responses. All of the students agreed that Brad's ramp was steeper. 

Initiating. At this point in the lesson, the teacher decided to define steepness in 
terms of slantiness. Central to the decision to initiate is the establishment of concep- 
tual readiness. The teacher felt that enough students had reflectively abstracted the 
attribute of slantiness as a distinct conceptual object from the attributes of height 
and work required to climb. As a result, the teacher believed that the students would 
be better able to make sense of the conventional characterization of steepness as 
slantiness. Had the teacher initiated earlier at Nathan's request, she may have 
afforded the continuation of the conflation of steepness with other attributes. 

The teacher's initiating action took the form of asking students to summarize their 
work in such a way that she could introduce the link between steepness and slan- 
tiness. She began by asking the students to describe the differences they saw 
between the two ramps shown in Figure 9. The students reported that the ramp on 
the right was higher, longer, and harder to walk up. Then the teacher initiated the 
conventional knowledge that steepness refers to the slantiness of an object. She did 
this by inserting the idea as a culminating comment after the students had summa- 
rized the differences between the given ramps: 
Teacher: The reason this is important is that there are important differences here between 

the ramps, and sometimes they get confused with steepness. But with steep- 
ness we're actually going to focus on something different. Um, do you think 
these have the same steepness [points to the two ramps shown in Figure 9]? 

Students: [Silence] 
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Teacher: Do they have the same slantiness? 
Students: Yes. 
Teacher: If I call this flat [gestures with forearm to show a horizontal "ramp"] and then 

a little steeper [gestures with forearm to show an incline that is nearly hori- 
zontal], steeper [gestures with forearm to show a steeper incline], steeper 
[gestures with forearm to show an incline that is nearly vertical]. This is getting 
steeper [sweeps arm from horizontal to nearly vertical]. Do these two ramps 
[pointing to Figure 9] have the same steepness? 

Brad: Yes. 
Teacher: Ok, right now we'll proceed but one thing I want to say is that when we're 

talking about steepness we're talking about this slantiness. We're not talking 
about whether it's harder to walk up it. They are definitely different ramps. 
You have to walk further on this one [points to the ramp on the right in Figure 
9]. This one is higher. This one is longer. But there is something the same 
about them. And that's what ... 

Nathan: ... the slantiness. They're almost the same angle [gestures with his hand, 
tilting it up]. 

Teacher: It has something to do with the angle, okay. 
The remainder of the lesson contains several pieces of evidence that the students 

appeared to engage cognitively with the initiated ideas. For example, the teacher asked 
if someone could draw two nonidentical ramps with the same steepness. Jim said that 
the ramps shown in Figure 9 would work, and several students agreed. The teacher 
reminded them that at one point in the discussion, Nathan and Josh had argued that 
these ramps did not have the same steepness. Brad suggested that they could make 
the two ramps have exactly the same steepness if they had "more supplies," but that 
they were pretty close. The students seemed to now see the ramps in Figure 9 as having 
the same degree of steepness. Additionally, the students appropriately used the term 
steepness in the next 15-minute episode of the lesson in which they used a dynamic 
sketch in The Geometer's Sketchpad (Jackiw, 1995) to explore how different attrib- 
utes affected steepness. Finally, none of the problems that had cropped up earlier for 
the tasks associated with Figures 9 and 10 appeared later in the lesson when the teacher 
asked the students to use The Geometer's Sketchpad to create a family of ramps with 
the same steepness. Although we cannot claim that the initiating action eliminated 
all confusion, for the remainder of the lesson the students appeared to focus on the 
attribute of steepness without conflating it with other attributes. Results from another 
study (Lobato & Siebert, 2002) further support this claim. 

Episode 3: Providing Information So That Students Can Test Their Ideas 

We present this final episode as an example of initiating by providing informa- 
tion to allow students to test their ideas or generate a counterexample (Action 3). The 
episode also illustrates a pattern in which initiating occurs near the beginning of the 
episode, E-(I&E). This episode is drawn from the same context as for Episode 2 but 
occurs later in the lesson. One of the teacher's goals was to help the students under- 
stand that the ratio of a ramp's height to its length could be a legitimate measure of 
its steepness. The episode involved the following problem situation: 
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Suppose you work for a company that builds wheelchair ramps. You are in charge of 
making a catalogue for the different ramps that you make. You want to be able to 
communicate to people how steep the ramp is so they know what kind of ramp they 
will be buying. How would you measure the steepness of a ramp? 

Eliciting. When the teacher asked for ideas about how to measure the steepness of 
a ramp, Denise suggested they measure the hypotenuse, which could be seen as a 
reasonable attempt to directly measure the part of the apparatus that is steep. Brad 
measured the length of the hypotenuse of one of the ramps that was on the board from 
the earlier discussion of steepness (see Figure 11), and reported that it was 6 in. 

Initiating and eliciting. The teacher did not think the students would be able to 
devise a way to test Denise's conjecture, because they lacked the understanding 
about measures necessary to create such a test. In the following excerpt, the teacher 
provided some information about the nature of a measure, namely, that a measure 
of the steepness of a particular ramp should allow someone else to determine its 
steepness: 
Teacher: Now we have to talk about what a measure is. Could this [referring to the 

length of the hypotenuse] be a measure of steepness? By measure of steep- 
ness, what I mean is if a construction worker or someone who builds wheel- 
chair ramps says, "I have a wheelchair ramp with a hypotenuse of 6 in." Does 
that tell you how steep it is? 

Brad: No. 
Teacher: Brad says no, Jessica says no. Jim says yes. 
Denise: Can you say that again? 
Teacher: What we're trying to do is come up with a number that we can tell people 

and when they hear it, they will know how steep the ramp is. 

bit171 
6nckes 6nckes 

Figure 11. Brad's attempt to create a measure of steepness of a given ramp 
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Denise: Oh, okay. 
Teacher: Would 6 in. be it? 
Brad: No. 

Denise's request for the teacher to repeat this information suggests that she and 
perhaps others needed more information about what a measure was supposed to 
convey. The teacher decided to continue initiating by taking on part of the task for 
the students (namely, providing information about what constitutes an appropriate 
test of a measure) while eliciting their ideas about which quantities to test as a 
measure of the steepness of ramps. Specifically, the teacher attempted to convey 
the information that if Denise's measure of 6 in. was a good measure of steepness, 
then every ramp that the students could draw with a hypotenuse of 6 in. should have 
the same steepness: 

To test whether this 6 in. could be a measure, I'm going to make Josh and Jessica test 
this because they both think that it isn't [a measure]. I want both of you to go up to the 
board and see if you can make a ramp, and the rest of you can be making one on your 
sheets of paper, that has a hypotenuse of 6 in. that is not as steep or is steeper than the 
one on the board. 

When the students carried out this activity, they discovered that some of their 
ramps were steeper than others. Thus, they concluded that the length of the ramp 
alone was not a good measure of steepness. The students repeated this process twice 
more, each time suggesting, testing, and eventually rejecting different extensive 
measures,4 namely, the height of the ramp and the length of the base of the ramp. 
They also conjectured, tested, and accepted the angle of inclination formed between 
the hypotenuse and the base of the ramp as a good measure of its steepness. The 
majority of the students eventually constructed an intensive measure, namely, the 
ratio of the height of the ramp to the length of the base (see details in Lobato & 
Thanheiser, 2000, 2002). 

The influence of initiating. The students' ability to test various quantities as 
measures provides some evidence of engagement with the initiated ideas about the 
nature of measures. Furthermore, some students appeared to use some of the ideas 
introduced by the teacher. For example, after conjecturing whether the height 
could be a reasonable measure of the steepness of a ramp, Katie asked what they 
were supposed to do (presumably to test the measure). Denise explained, "We are 
supposed to draw ramps with a height of 5 3/4 in. to see if we all get the same steep- 
ness," thus indicating some engagement with the teacher's initiated ideas about the 
nature of measures. 

What is perhaps more important is that we do not see evidence that the initiating 
action limited cognitive engagement on the part of the students other than being 
relieved of the burden of figuring out a way to test their measures. If the students 

4 Schwarz (1988) distinguished extensive quantities, such as distance or age, which can be counted 
or measured from intensive quantities, such as speed or gas efficiency, which are composed as a ratio. 
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were capable of finding a way to test their measures, then eliciting actions may have 
been a better choice. Despite the fact that part of the task was aided by the teacher, 
the conversation indicated that there was more than one possible solution path vali- 
dated in the classroom. Students presented a variety of ideas, unanticipated by the 
teacher, that were uniquely theirs. Although it is possible that premature closure of 
mathematical exploration occurred, the teacher's decision clearly led to a situation 
in which the students engaged in a rich and lengthy investigation of important math- 
ematical ideas. 

It is possible that by providing students with a way to test their results, some 
authority was relegated to the teacher. This could have circumvented the develop- 
ment of student responsibility for judgments of mathematical correctness and 
coherence. However, it is also possible the students simply did not understand 
enough about the characteristics of measures to find their own ways to test the 
validity of their ideas. The teacher believed that asking students to make conjec- 
tures was a sufficiently challenging task without additionally requiring them to 
devise a way to check their conjectures. In fact, by carrying out the tests of each 
potential measure and deciding in the end whether or not it was a valid measure of 
steepness, the students did share in the responsibility for the judgments of mathe- 
matical correctness and coherence. Weighing such competing factors constitutes 
the essence of reflective pedagogical action. 

DISCUSSION 

Our intention in this article was to move away from a false choice between 
constructivist teaching approaches and telling methods toward a more sophisticated 
range of pedagogical actions. Rather than simply including judicious telling into 
the palette of teaching actions, we have argued instead for a rethinking of the concep- 
tual roots of telling. Whereas others have rethought telling and expanded its defi- 
nition (Chazan & Ball, 1999; Hiebert et al., 1997), we have addressed the action 
typically left out by researchers-direct introduction of new information and ideas. 
More important, our approach shifts the focus from the form of a teacher's action 
to its function in the classroom. By doing so we emphasize the need to attend to 
how a telling act is interpreted by students. Rather than making assumptions about 
which teacher actions will appropriately problematize mathematics for students, the 
shift toward function addresses pedagogical acts from a student-centered view. 

The other important distinction of our approach is its incorporation of telling 
actions into a larger pedagogical structure. By viewing initiating and eliciting as 
mutually informing one another, we help guard against some of the legitimate 
concerns raised with telling. Our consideration of initiating as part of a larger struc- 
ture focuses attention on the interaction between teacher and students in a manner 
that consistently attaches priority to the development of the students' mathematics, 
rather than to the communication of the teacher's mathematics. This allows us to 
focus on telling as an act of communicating conceptual rather than procedural 
content. Other research on expanding telling actions has focused on "how to tell" 
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in a manner that does not impede students' conceptual growth. We instead consider 
how one can exploit telling actions to promote conceptual growth by linking initi- 
ating to the process of reflective abstraction. 

Although traditional telling is grounded in a broadcast/reception model of 
communication-a model that has been properly rejected by both researchers and 
teachers in mathematics education-we instead argued from our data that commu- 
nication constitutes a state of dialectical tension between the teacher and the learner. 
This model of linguistic behavior is closer to emerging models in which words are 
seen not as "things we move from one place to another," but as "tokens for linguistic 
coordination of actions" (Maturana & Varela, 1992). Viewed from this perspective, 
removing one of these actions from its context and labeling it as an example of telling 
violates the linguistic give-and-take between the student and teacher over mean- 
ingful mathematical content. To then place this context-less utterance at odds with 
a constructivist way of coming to know is to create a category error in which a frame- 
work for understanding is pitted against a class of speech acts (Searle, 1969).5 We 
resolve this problem by examining the processes of telling empirically, showing that 
the definition of what constitutes telling is context sensitive. This is why we attend 
to the teacher's intentions and actions as well as to the students' interpretation of 
the initiated idea for each act of initiation. 

We acknowledge that there are multiple sophisticated teacher actions beneath the 
umbrella term "telling," and that these initiating actions differ significantly across 
the three instructional episodes analyzed in this paper. The action of declaring a 
connection between partitioning and the calculation of division in Episode 1 may 
be perceived as most similar to traditional telling. The main difference is that the 
conveyed information was conceptual rather than procedural in nature. However, 
in Episodes 2 and 3, the teacher did not tell students the main idea that she wanted 
them to understand; instead, she provided ancillary information that afforded their 
mathematical investigation. Furthermore, the initiating actions in Episodes 2 and 3 
involved different forms of utterances than declarative statements and different 
relationships between initiating and eliciting. In short, the ways in which we refor- 
mulated telling instantiated themselves differently across the three empirical episodes. 

The data indicate that different local intentions relate to different interactional 
patterns of initiating and eliciting. In Episode 1, the teacher's intention was for the 
student to develop a connection between partitioning and calculating. Thus, a 
cyclic pattern of initiating and eliciting was appropriate. The teacher preceded initi- 
ating with eliciting so that she could gather information about the student's thinking 
before making a judgment to introduce new information. Once the teacher engaged 
in initiating, she then stepped back and elicited to see what the student did with that 
information. In Episode 2, the teacher's intention was to introduce a mathematical 

5 The authors thank Anthony E. Kelly for bringing to their attention this connection to Searle's work 
on speech acts. 
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convention linking steepness with slantiness. However, she felt that the students 
would be better prepared to make sense of this information if they first isolated the 
attribute of slantiness from other attributes in the situation. Thus, a lengthy period 
of eliciting preceded the initiating. Finally, in Episode 3, initiating appeared near 
the beginning of the episode because the teacher's intention was to relocate part of 
the task onto herself in order to enable students to engage in exploration. These links 
between different intentions and related patterns of initiating and eliciting can be 
applied to a range of instructional settings. 

We recognize that initiating and eliciting are only two ends of a spectrum rather 
than a full set of pedagogical actions. Further research is needed to articulate other 
actions that could contribute to the system of actions related to initiating and elic- 
iting. We also acknowledge that there are other legitimate ways to conceive of the 
pedagogical actions developed in this article. However, our goal in defining initi- 
ating as serving the function of introducing new information was to validate the part 
of telling that has historically been most difficult to reconcile with constructivism. 
We hope that by articulating initiating and eliciting, we can move beyond the unnec- 
essary tension between constructivism and telling to a recognition of the much richer 
and more subtle range of actions available to teachers seeking to promote concep- 
tual development. 
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