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Abstract 

Mathematics education and cognitive science research paint differing portrayals of adolescents’ 

reasoning. A perennial concern in mathematics education is that students fail to understand the 

nature of evidence and justification in mathematics. In particular, students rely overwhelming on 

examples-based (inductive) reasoning to justify the truth of mathematical statements, and often 

fail to successfully navigate the transition from inductive to deductive reasoning. In contrast, 

cognitive science research has demonstrated that children often rely quite successfully on 

inductive inference strategies to make sense of the natural world. In fact, by the time children 

reach middle school, they have had countless experiences successfully employing empirical, 

inductive reasoning in domains outside of mathematics. In this chapter, we explore this seeming 

paradox and, in particular, explore the question of whether the skills or knowledge that underlie 

adolescents’ abilities to reason in non-mathematical domains can be leveraged to foster the 

development of increasingly more sophisticated ways of reasoning in mathematical domains. 
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A perennial concern in mathematics education is that students fail to understand the 

nature of evidence and justification in mathematics (Kloosterman & Lester, 2004). 

Consequently, mathematical reasoning—proof, in particular—has been receiving increased 

attention in the mathematics education community with researchers and reform initiatives alike 

advocating that proof should play a central role in the mathematics education of students at all 

grade levels (e.g., Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002; National Council of 

Teachers of Mathematics, 2000; Knuth, 2002a, 2002b; RAND Mathematics Study Panel, 2002; 

Sowder & Harel, 1998; Yackel & Hanna, 2003). Proof plays a critical role in promoting deep 

learning in mathematics (Hanna, 2000); as Stylianides (2007) noted, “proof and proving are 

fundamental to doing and knowing mathematics; they are the basis of mathematical 

understanding and essential in developing, establishing, and communicating mathematical 

knowledge” (p. 289). Yet, despite its importance to learning as well as the growing emphasis 

being placed on proof in school mathematics, research continues to paint a bleak picture of 

students’ abilities to reason mathematically (e.g., Dreyfus, 1999; Healy & Hoyles, 2000; Knuth, 

Choppin, & Bieda, 2009; Martin et al., 2005). 

In contrast, cognitive science research has revealed surprising strengths in children’s 

abilities to reason inferentially in non-mathematical domains (e.g., Gelman & Kalish, 2006; 

Gopnik, et al., 2004). Although more traditional (Piagetian) views posit children as limited to 

understanding obvious relations among observable properties, there is growing evidence that 

children are capable of developing sophisticated causal theories, and of using powerful strategies 

of inductive inference when reasoning about the natural world (for review, see Gelman & Kalish, 

2006). In the former case, for example, children can integrate statistical patterns to form 
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representations of underlying causal mechanisms (Gopnik & Schulz, 2007). In the latter case, for 

example, children often organize their knowledge of living things in ways that reflect theoretical 

principles rather than superficial appearances (Gelman, 2003). Thus, this raises something of a 

paradox: Why do children appear so capable when reasoning in non-mathematical domains, yet 

seemingly appear so incapable when reasoning in mathematical domains? 

In this chapter, we explore the paradox by considering the research on adolescents’ 

reasoning capabilities within mathematics education as well as within cognitive science. In 

particular, we briefly consider research that provides a portrayal of adolescents’ reasoning in 

mathematical and non-mathematical domains. Next, we present preliminary results from the first 

phase of our multi-year research effort to better understand the relationships between 

adolescents’ reasoning in mathematical and non-mathematical domains. We view such 

relationships as a means for potentially leveraging the strengths adolescents demonstrate when 

reasoning in non-mathematical domains to foster the development of their mathematical ways of 

reasoning. Finally, we discuss the implications of our research as well as its future directions. 

Situating the Paradox 

Mathematics education and cognitive science research paint differing portrayals of 

adolescents’ reasoning, particularly with respect to the nature of their reasoning strategies. In the 

world outside the mathematics classroom, children typically rely quite successfully on inductive 

inference strategies—empirical generalizations and causal theories—to make sense of the natural 

world. For example, preschool-aged children are able to interpret and construct interventions to 

identify causal mechanisms in simple systems (Gopnik, et al., 2004). Young children also have 

rich knowledge structures supporting explanation and predictions of physical, biological, and 

social phenomena (Gelman & Kalish, 2006). In fact, by the time children reach middle school, 
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they have had countless experiences successfully employing empirical, inductive reasoning in 

domains outside of mathematics.1 Not surprisingly, many students also employ similar reasoning 

strategies as they encounter ideas and problems in mathematics (Recio & Godino, 2001); 

however, they often fail to successfully navigate the transition from inductive to deductive 

reasoning—the latter being the essence of reasoning in mathematics. As Bretscher (2003) noted, 

“Proof in everyday life tends to take the form of evidence used to back up a statement. 

Mathematical proof is something quite distinct: evidence alone might support a conjecture but 

would not be sufficient to be called a proof” (p. 3). 

Adolescent Reasoning in Mathematical Domains 

It is generally accepted that students’ understandings of mathematical justification are 

“likely to proceed from inductive toward deductive and toward greater generality” (Simon & 

Blume, 1996, p. 9). Indeed, various mathematical reasoning hierarchies have been proposed that 

reflect this expected progression (e.g., Balacheff, 1987; Bell, 1976; van Dormolen, 1977; 

Waring, 2000); yet, research continues to show that many students fail to successfully make the 

transition from inductive to deductive reasoning.2 One of the primary challenges students face in 

developing an understanding of deductive proof is overcoming their reliance on empirical 

evidence (Fischbein, 1982). In fact, the wealth of studies investigating students’ proving 

                                                        
1 Unfortunately, children’s experiences successfully employing empirical, inductive reasoning in elementary school 
also tend to engender the belief that such reasoning suffices as proof in mathematical domains. 
2 The hierarchies that have been proposed, although based on empirical data, do not provide accounts regarding the 
actual transition from inductive to deductive reasoning. Rather, the hierarchies primarily note differences in the 
nature of students’ inductive reasoning (e.g., justifications that rely on several “typical” cases versus those that rely 
on “extreme” cases) with deductive reasoning being at the “upper end” of the hierarchies, and not how (or if) such 
inductive reasoning strategies can develop into deductive reasoning strategies. 
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competencies demonstrates that students overwhelmingly rely on examples to justify the truth of 

statements (e.g., Healy & Hoyles, 2000; Knuth, Choppin, & Bieda, 2009; Porteous, 1990).3 

As a means of illustrating adolescent reasoning in mathematics, we briefly present results 

from our prior work concerning middle school students’ proving and justifying competencies. 

The following longitudinal data are from 78 middle school students who completed a written 

assessment at the beginning of Grades 6 and 7, and at the end of Grade 8; the assessment focused 

on students’ production of justifications as well as on their comprehension of justifications.4 In 

the narrative that follows, we present a representative sample of the assessment items and 

corresponding student responses. Justifications in which examples were used to support the truth 

of a statement were categorized as empirical, justifications in which there was an attempt to treat 

the general case (i.e., demonstrate that the statement is true for all members of the set) were 

categorized as general, and justifications that did not fit either of these two aforementioned 

categories were categorized as other.5 

As an example, students were asked to provide a justification to the following item: If you 

add any three odd numbers together, is your answer always odd? The following two student 

responses are representative of empirical justifications: 

Yes because 7+7+7=21; 3+3+3=9; 13+13+13=39. Those problems are proof that 

it is true. (Grade 6 student) 

 

                                                        
3 For the purposes of this chapter, we define inductive reasoning to be reasoning that is based on the use of empirical 
evidence, and by empirical evidence we mean the use of examples to justify statements or conjectures. Moreover, 
inductive reasoning is not to be confused with mathematical induction—a mathematically valid method of proving. 
4 The assessment items presented below were the same for each administration of the assessment, and the same 
group of students completed the assessment at all three time points. 
5 We have simplified the categorizations described in this chapter as we are primarily interested in highlighting the 
differences between empirical-based justifications and more general, deductive justifications. See Knuth, Choppin, 
and Bieda (2009) and Knuth, Bieda, and Choppin (forthcoming) for more detail about the study’s results. 
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1+3+3=7.  3+11+1=15.  Yes it would be but you will have to do it a 100 times 

just to make sure. (Grade 7 student) 

 

In contrast, the following two responses are representative of general justifications: 

If you add two odds, the result is even. An even plus one more odd is odd. So 

three odds added together always results in odd. (Grade 6 student) 

 

We know that odd and odd equals even. So even (2 odds) added together with odd 

equals odd. This shows us that no matter what three odd numbers you add 

together, the sum will always be an odd number. (Grade 8 student) 

 

Responses categorized as other (see Footnote 2) were often restatements of the question (without 

further justification) or nonsensical responses (e.g., “It is not always odd because some problems 

are even like 1+2+3=6, 3+4+5=12”). Table 1 displays the overall results of students’ 

justifications for this item. As the table illustrates, a significant number of students relied on 

examples as their means of justification, with very little change occurring across the middle 

grades. We also see an increase in the number of students attempting to produce more general, 

deductive justifications from Grade 6 to Grade 8; yet still less than half the students produce such 

justifications even by the end of their middle school mathematics education. 

As a second example, consider students’ responses to the following assessment item: 

Sarah discovers a cool number trick. She thinks of a number between 1 and 10, she adds 3 to the 

number, doubles the result, and then she writes this answer down. She goes back to the number 

she first thought of, she doubles it, she adds 6 to the result, and then she writes this answer 
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down. [A worked-out example, including the computations, followed the preceding text.] Will 

Sarah’s two answers always be equal to each other for any number between 1 and 10? In this 

case it is also worth noting that students could use examples to prove that the statement is always 

true by testing the entire set of possible numbers (i.e., numbers between 1 and 10). Table 2 

presents the results for this item; justifications based on proof-by-exhaustion are also included in 

the general category (only approximately 5% of students in each grade level used this method). 

Given the significant proportion of students whose responses were categorized as other, it is 

worth briefly discussing potential reasons underlying their responses. The majority of these 

responses were either a result of (i) students misinterpreting the problem, thinking that the end 

result must always be twenty (the result that was provided in the worked-out example that 

accompanied the problem); or (ii) students not being able to articulate a general argument—

students could “see” what was going on but were unable to provide an adequate justification. In 

the former case, the following response is representative: “No, because the number comes out 

differently if you chose a number like 11. It does not come out as 20” (Grade 8 student). In the 

latter case, the following response is representative: “The answers will always be equal because 

you’re just doing the same thing” (Grade 7 student). Although the percentage of students who 

relied on empirical-based justifications decreased relative to the previous example, the grade-

level trend regarding the number of students providing general, deductive justifications remained 

about the same (again, less than 50% of the students at any grade level provided this type of 

justification). 

As a final example, consider the following item in which students were asked to compare 

an empirical-based justification with a general, deductive justification: The teacher says the 

following is a mathematical fact: When you add any two consecutive numbers, the answer is 
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always odd. Two students offer their explanations to show that this fact is true [Note: an 

empirical-based justification and a general, deductive justification are then presented for the 

students]. Whose response proves that if we were to add any two consecutive numbers we would 

get an answer that is an odd number? As Table 3 suggests, for many middle school students, an 

empirical-based justification seems to suffice as proof. We see a slight grade level increase in 

viewing the general, deductive justification as proving the claim and, interestingly, we see a 

substantial decrease by Grade 7 of students who think both justifications prove the claim. 

In summary, the snapshot of adolescents’ mathematical reasoning illustrated above is 

quite typical of the findings from much of the research: adolescents are limited in their 

understanding of what constitutes evidence and justification in mathematics and, moreover, they 

demonstrate a proclivity for empirical-based, inductive reasoning rather than more general, 

deductive reasoning. Although most studies have focused on adolescents in a particular grade 

level or across grade levels (i.e., cross-sectional studies), the research discussed above provides a 

longitudinal view into the development of adolescents’ mathematical reasoning. And given this 

longitudinal view, we see very little development as adolescents progress through their middle 

school years, and what development we do see falls far short of desired outcomes. 

Adolescent Reasoning in Non-mathematical Domains 

The difficulties that adolescents show with regard to mathematical reasoning, including 

the apparent lack of development as they progress through middle school, raise the question of 

whether there is some developmental constraint that limits adolescents’ mathematical reasoning. 

The most likely candidate would be abilities to do and understand deductive inference. The 

emergence of deductive inference has been a central focus of research on adolescent cognitive 

development, spurred in part by Piaget’s theory of formal operations. Although there is 
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considerable debate within this literature, a plausible reading suggests there is nothing special 

about adolescence in terms of acquiring deduction. Younger children, for example, have been 

shown to appreciate that deductive inference leads to certain conclusions, and is stronger than 

inductive inference (Pillow, 2002). At the same time, however, even adults struggle to reason 

formally and deductively.6 Thus, deductive inference seems neither impossible before 

adolescence, nor guaranteed after. Rather than review the literature on the development of 

deductive inference in non-mathematical domains (see Falmange & Gonsalves, 1995), we take a 

slightly different approach here. Similar to the mathematics education research on proof 

discussed above, researchers in psychology have often argued that people rely on empirical 

solutions to deductive problems. An interesting difference with the literature in mathematics 

education, however, is that these empirical-based solutions are typically evaluated quite 

positively in non-mathematical domains. That is, the kind of performance that makes people look 

like poor deductive reasoners is actually consistent with their being quite good inductive 

reasoners. 

Deductive and inductive arguments have very different qualities. On the one hand, in 

making a deductive argument, one endeavors to show that the hypothesized conjecture must be 

true as a logical consequence of the premises (i.e., axioms, theorems). On the other hand, in 

making an inductive argument, one seeks supporting evidence as the means for justifying that the 

conjecture is likely to be true. We will refer to arguments based on accumulation of evidence as 

“empirical.” Often times the empirical support in inductive arguments is provided by examples. 

The conclusion “All ravens are black” is supported by encounters with black ravens (and the 

                                                        
6 Note that in this literature, as in almost all work in psychology, “adult” means college-aged. 
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absence of no black ones).7 The critical point is that deductive arguments prove their conclusions 

though logic, while inductive arguments provide evidence that conclusions are likely. Again, 

though there is strong debate, one influential view is that people often seek evidence (make 

inductive arguments based on examples from a class) when asked to evaluate logical validity 

(make deductive arguments). 

One of the clearest examples of inductive approaches to a deductive problem is Oaksford 

and Chater’s (1994) analysis of performance on the Wason selection task. The selection task is a 

classic test of logical argumentation. A participant is asked to evaluate a conjecture about a 

conditional relation, such as “If there is a p on one side of a card, then there is a q on the other 

side.” The participant is presented with four cards: one each showing p, not-p, q, and not-q. The 

task is to select just the cards necessary to validate the conjecture. The logical solution is to 

ensure that the cards are consistent with the conjecture: that there are no p and not-q cards. To 

confirm this involves checking that there is a q on the back of the p card, and checking that there 

is a not-p on the back of the not-q card. In practice, most people do check the p card, but very 

few examine the not-q card. Rather, most people opt to explore the q card, which is logically 

irrelevant (both p and q and not-p and not-q are consistent with the conjecture). This behavior is 

often interpreted as akin to the logical fallacy of affirming the consequent (if p then q, q, 

therefore p). Oaksford and Chater argue that selecting the p and the q cards is actually a 

reasonable strategy for assessing the evidential support for the conjecture. Though the details are 

quite complex, they show that given reasonable assumptions about the relative frequencies of p 

and q, the cards selected are the most informative tests. That is, people’s behavior conforms to a 

normative standard of hypothesis testing (e.g., optimal experiment design). 

                                                        
7 There are many other sources of inductive support. For example, that one’s teacher says, “All ravens are black.” 
provides some reason for adopting the belief. 
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The distinction turns on two different ways of construing the task. Interpreting the 

problem as a deductive one (the way experimenters’ intend it) can be glossed something like 

this: Is the statement logically consistent with the features of the four cards on the table? The 

inductive construal is something like the following: Is the statement likely to be true of cards in 

general? Although the deductive problem can be solved conclusively, it is not really that 

interesting or important (who cares about these four cards?) The inductive problem can never be 

truly solved (absent investigation of every card in the world), however, it is just the kind of 

problem that people really care about and face in their everyday lives. How can past experience 

(the four cards) help in the future (expectations about new cards)? 

The idea that people often employ inductive, evidential support, strategies to solve 

deductive problems is part of a general approach to cognition and cognitive development that 

emphasizes probabilistic reasoning (Chater & Oaksford, 2008). From this perspective, most of 

the cognitive challenges people face involve estimating probabilities from evidence. This is 

straightforward for processes of categorization and property projection. Learning that barking 

things tend to be dogs, and that dogs tend to bark, seems to involve learning some conditional 

probabilities. Influential accounts of language acquisition suggest that children are not learning 

formal grammars (deductive re-write rules) but rather patterns of probabilities in word co-

occurrences and transitions. Even vision has been analyzed as Bayesian inference about 

structures likely to have generated a given perceptual experience. The general perspective is that 

inductive inference is ubiquitous; we are continually engaged in the task of evaluating and 

seeking evidential support. Given the centrality of inductive inference, it should not be surprising 

that many psychologists argue that we are surprisingly good at it and, good at it from a 

surprisingly young age (Xu & Tenenbaum, 2007a; 2007b). 
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There are several lines of research potentially relevant to understanding adolescents’ 

reasoning strategies in mathematics. Perhaps the most direct connection is with research on 

evaluations of inductive arguments. In contrast to deductive arguments, which are either valid or 

invalid, inductive arguments can vary in strength. If people are good at reasoning inductively, 

then they ought to be able to distinguish better and poorer arguments, stronger and weaker 

evidence, for conclusions. This work has both a descriptive focus—how do people distinguish 

stronger and weaker evidence—and a normative focus—do people’s strategies conform to 

normative standards for evidence evaluation? 

Most work on adolescent inductive inference has focused on the problem of identifying 

causal relations in multivariate domains (see Kuhn, 2002, for a review). Questions center on 

children’s abilities to construct and recognize unconfounded experiments, distinguish between 

hypotheses and evidence, and generally to adopt systematic investigation strategies. Similar to 

the literature on deductive inference, the conclusions are generally that young children show 

some important abilities but are quite limited; adults are better, but far from perfect; and 

adolescents are somewhere in the middle. Other forms or elements of inductive reasoning show a 

significantly different profile: Even young children are skilled at inductive inference (see Gopnik 

& Schulz, 2007). Adolescents have not been the direct focus of research, but there seems no 

reason to believe that inductive inference skills should decline from early childhood to 

adolescence. 

Research on evidential support explores how people respond to or generate evidence. 

Evidence in this work consists of different kinds of examples or instances.8 The task is to make 

or evaluate a conclusion based on that evidence. For example, given that robins are known to 

                                                        
8 In much of this work, the “examples” are categories of animals. It is unclear whether category-to-category 
inferences (“robins” to “owls”) is different than individual-to-individual inferences (“these 3 robins” to “these 3 
owls”). 
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have a certain property (e.g., hollow bones), how likely is it that owls also have the property? 

The evidence consists of examples known to have the property in question. These examples can 

be understood as premises in an argument about the conclusion: The strength of the argument is 

confidence in the conclusion conditional on the evidence. Osherson and colleagues (Osherson, et 

al., 1990) developed one of the first models and described several criteria for evidential strength. 

Subsequent research has explored the development and application of these and other criteria 

(Lopez, Gelman, Gutheil, & Smith, 1992; Heit & Hahn, 2001; Rhodes, Gelman, & Brickman, in 

press). Table 4 provides a list of proposed criteria; note that some of these criteria are more 

normatively defensible than others. 

Although there remains some debate about preschool-aged children, most researchers 

would agree that by middle childhood children use the criteria in Table 4 to evaluate examples as 

evidence. Thus, children judge that many examples are more convincing than are fewer, that a 

diverse set of examples is better than a set of very similar examples, and that an argument based 

on a typical example is stronger than an argument based on an atypical example. Research 

continues on other principles of example-based arguments, such as the role of contrasting cases 

(e.g., non-birds that do not have hollow-bones; Kalish & Lawson, 2007) and children’s 

appreciation of the importance of sampling. The general conclusion is that children, including 

adolescents, are similar to adults in their evaluations of evidence. Moreover, children’s 

evaluations accord quite well with normative standards of evidence. 

Adolescent Reasoning in Mathematical and Non-mathematical Domains 

The preceding discussion highlights some important differences between adolescent 

reasoning in mathematical and non-mathematical domains. In mathematics education, inductive 

strategies are typically treated as a stumbling block to overcome rather than as an object of study. 
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Moreover, mathematics education research has focused primarily on distinctions between 

empirical/inductive and formal/deductive justifications, and questions such as what makes one 

empirical justification better than another or what constitutes better/stronger evidence has not 

been well addressed.9 In a recent paper Christou and Papageorgiou (2007) argued that the skills 

involved in induction, such as “comparing” or “distinguishing,” were similar in mathematical 

and non-mathematical domains. Christou and Papageorgiou’s work showed that students can 

identify similarities among numbers, distinguish non-conforming examples, and extend a pattern 

to include new instances. Thus, identifying how adolescents use such abilities to evaluate both 

mathematical and non-mathematical conjectures and how they think about the nature of evidence 

used to support conjectures may suggest a means for leveraging their inductive reasoning skills 

to foster the development of more sophisticated (deductive) ways of reasoning in mathematical 

domains. 

Exploring the Paradox 

What kinds of skills or knowledge underlie adolescents’ abilities to reason in non-

mathematical domains, and might such skills or knowledge have any relevance to reasoning in 

mathematical domains? There are many different accounts of inductive inference, but one fairly 

consistent component is a representation of relevant similarity in the domain. To make or 

evaluate empirical-based, inductive inferences one must have a sense of the significant relations 

among the examples or objects. For example, if the task is to decide whether birds have 

hemoglobin in their blood or not, the most informative examples will be objects similar to birds. 

The argument that since spiders lack hemoglobin, birds must lack it as well is not particularly 

convincing because spiders and birds seem very different. In contrast, knowing that reptiles have 

                                                        
9 Although mathematics education researchers have noted differences in the nature of empirical justifications—
checking a few “random” cases, systematically checking a few cases (e.g., even and odd numbers), and checking 
extreme cases (e.g., Balacheff, 1987)—they have not engaged in any deeper study of empirical justifications. 
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hemoglobin seems quite relevant if we believe birds and reptiles are relevantly similar.  The 

critical question, then, is “what makes two things relevantly similar?” Other principles of 

inductive inference described earlier also depend on similarity relations (e.g., typical examples 

are better because they are similar to many other examples). The relevant similarity relations are, 

in part, knowledge dependent. Airplanes are similar to birds and may be useful examples to use 

when making inferences about aerodynamics, however, the question about hemoglobin calls for 

a biological sense of similarity. Getting the right similarity relations is a critical part of expertise. 

For example, experts tend to see “deep” similarities (e.g., evolutionary history), while novices 

often rely on shallow, domain-general similarities (e.g., appearances; Bedard & Chi, 1992). Put 

another way, reasoning from similar cases will only be successful if one’s representation of 

“similar” really does capture important relations in the domain. 

A considerable amount of research and debate in the cognitive developmental literature 

involves just what kinds of similarity relations children recognize and how such relations are 

acquired. Some argue, for example, that evolution has equipped us to be sensitive to significant 

similarities (Spelke, 2000; Quine, 1969). Others argue that domain general learning principles 

allow children to hone in on the important relations (Rogers & McClelland, 2004). Regardless, 

the general finding is that quite young children seem to display useful and productive intuitions 

about similarity in the empirical domains studied. Even preschoolers recognize that reptiles are 

more like birds than are airplanes when biological questions are involved, but that airplanes may 

be more informative about birds when the questions involve aerodynamics (for example, Kalish 

& Gelman, 1992). Unfortunately, the mechanisms that have been hypothesized to underlie the 

development of similarity in empirical domains may fail to support a sense of mathematical 

similarity useful for evaluating mathematical conjectures. 
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The nativist view of similarity suggests that evolutionary pressures have shaped the 

human cognitive system to focus on important relations. For example, snakes often look like 

sticks, but an organism that focused on these similarities would find itself in significant peril. 

Clearly, quantitative relations have adaptive significance, and a long enough history that our 

species could have evolved specific cognitive dispositions to represent such relations. Indeed, 

there are important claims of just such a “number sense” involving representations of 

approximate magnitude (see Dahaene, 1999). Beyond the early grades, however, such relations 

are generally not important parts of mathematical thinking or reasoning. A sense of numerical 

similarity based on approximate magnitude is a limited basis for evaluating or making inferences 

about mathematical relations. The principles of mathematical relations depend on a formal 

system, which is too recent an invention to have had any significant selective pressure on the 

human cognitive system (see Geary, 1995). In geometry, basic mechanisms for representing 

shape provide a natural organization to the domain. It seems possible that this sense of similarity 

may be more productive, more related to mathematically significant properties, than 

representations of number. 

Empiricist views of the development of similarity also suggest pessimism about a 

mathematical sense of similarity. The empiricist idea is that children form representations in a 

domain by tracking statistical patterns. In the natural world, objects tend to form clusters: There 

are natural discontinuities (Rosch, et al., 1976). The features that are important for representing 

animals tend to come in groups, with high intra-group correlations among features and low inter-

group correlations. For example, birds tend to fly, have wings, and have feathers. These features 

co-occur and tend to be distinctive from the features of mammals that walk, have legs, and have 

fur. These patterns in the distributions of observed features allow people to pick out informative 
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features and represent kinds or categories that reflect those distributions. A sense of 

mathematical similarity will also be dependent on the kinds of relations and distributions of 

properties observed in experience. Again, it seems likely that many of the most significant 

relations among mathematical objects in children’s regular as well as school experiences may not 

be particularly well correlated with mathematically significant relations. A tendency to notice 

similarity in appearance does lead one toward a fairly useful notion of similarity among animals, 

because biological properties tend to be correlated with appearance. In contrast, a tendency to 

notice frequency or magnitude among numbers does not typically lead to a mathematically 

useful notion of similarity of numbers. Moreover, mathematical objects, at least numbers, have a 

network organization: There are many cross-cutting dimensions of similarity. In contrast, there is 

one, taxonomic, way of representing similarity relations among living things that seems primary 

(though see Ross, Medin, & Cox, 2007 on significance of ecological relations). Again, geometric 

objects, with a strong hierarchical organization, and a closer tie to psychological mechanisms of 

shape perception, may be somewhat different than numbers in this regard. 

Thus, an important first step toward developing a deeper understanding of students’ 

inductive reasoning in the domain of mathematics is to explore their representations of similarity 

relations among mathematical objects.10 Successful inductive reasoning depends on seeing 

objects as similar to the degree they really do share important features or characteristics. How do 

students make judgments about whether two numbers or two geometric shapes are similar? What 

features or characteristics do students attend to when considering the similarity of numbers or 

geometric shapes? How do students’ similarity judgments compare with experts’ similarity 

judgments? Answers to such questions may provide insight into students’ choices for the 

                                                        
10 Note that our use of similarity refers to conceptual similarity unless we explicitly write mathematical similarity. 
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empirical evidence they use to justify mathematical conjectures, which, in turn, may provide 

insight into means to foster their transition to more deductive ways of reasoning.11 

Assessing Similarity in Mathematical Domains 

The first phase of our current research was to determine which features and 

characteristics individuals attend to when considering whole numbers and common geometric 

shapes; in particular, on what features might individuals base their decisions when determining 

whether a particular number or shape is typical? We conducted semi-structured interviews with 

14 middle school students, 14 undergraduates, and 14 doctoral students in mathematics and 

engineering fields (hereinafter, STEM experts). Participants examined various numbers and 

shapes on individual cards and then sorted and re-sorted them into groups according to whatever 

principles they chose (Medin et al., 1997). The numbers and shapes presented to participants for 

inclusion are shown in Figures 2 and 3. 

Participants engaged in three types of sorts: an open sort, a prompted sort, and a 

constrained sort. For the open sort, participants grouped and re-grouped numbers or shapes into 

categories of their own choosing until they had exhausted the types of categories they deemed 

relevant. For the prompted sort, the interviewer grouped some numbers (or shapes) according to 

a characteristic and asked participants to place additional numbers (or shapes) into the group. For 

instance, the interviewer might place the numbers 4, 25, and 81 (all perfect squares) into a group 

and ask the participant to include other numbers in the group. For the constrained sort, the 

interviewer provided a group of numbers (such as 4, 25, and 81) and then included an additional 

set of numbers (such as 23, 36, 51, and 100) and asked the participants which, if any, of the 

                                                        
11 Mathematics education research has revealed very little insight into students’ thinking regarding their choices of 
empirical evidence, yet such insight is critical in helping students develop more sophisticated ways of reasoning. For 
example, selecting examples that provide insight into the structure underlying why a conjecture is true can offer a 
potential means for generating a general, deductive justification (e.g., Yopp, 2009). 
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additional numbers should be included in the group. The prompted and constrained sorts allowed 

us to determine whether participants would sort by particular features deemed mathematically 

interesting, such as a number being a perfect square, versus other noticeable, yet mathematically 

uninteresting features, such as the number of digits of a number or the value of one of its digits. 

The participants’ responses to the sorting and tree building interview yielded 13 number 

categories and 13 shape categories denoting features deemed relevant in each domain. Table 5 

presents the number categories and their meanings. One of the more salient results from the 

number-sorting task was the number of similarities between the middle school students and the 

STEM experts in terms of which features they noticed. For instance, consider the parity category. 

Figure 4 shows the percentage of participants from each group who sorted according to parity in 

the three sorts. The “Parity 1st” part of the graph shows the percentage of participants who sorted 

by parity as their first-choice sort in the open sort. The “Parity Open” part shows the percentage 

of participants who sorted by parity in the open sort, but not as their first sort, and the “Parity 

Prompt” section shows the percentage of participants who were able to sort according to parity 

only in the prompted or constrained sorts. In this case it is clear that parity was a particularly 

salient feature for all three groups. 

The similarities between the middle school students and the STEM experts led us to 

wonder, were there any features that one group attended to but the other did not? The factors 

category was the only category that appeared to be salient to the middle school students but not 

to the undergraduates or the STEM experts. Just over 20% of the middle school students sorted 

according to factors in the open sort, whereas none of the undergraduates or STEM experts 

sorted according to factors. There was also just one category that the STEM experts could sort by 

more readily than the middle school students, and this was the squared category, referring to 
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numbers that are perfect squares. Figure 5 shows the percentage of participants in each group 

who were able to sort by perfect squares. 

The “prime” category was the other category of number we expected to be more salient 

to STEM experts, but this turned out not to be the case. Almost 90% of the STEM experts could 

sort according to primes, but 70% of the middle school students and the undergraduates could 

sort according to primes as well. Additionally, there were some mathematically uninteresting 

features that we expected the middle school students to attend to more than the experts, such as 

intervals, value of the digits, number of digits, contains a digit, and arithmetic. But of those five 

categories, differences only emerged for contains a digit and number of digits, and the 

differences were not large: 36% of the middle school students versus 21% of the experts sorted 

according to contains a digit, and 43% and 29% respectively sorted according to number of 

digits. 

Table 6 presents the categories for the number sort organized by the features to which 

each group of participants attended, in order from the most salient to the least. The middle school 

students and undergraduates were somewhat more attentive to common digits and number of 

digits than the STEM experts, whereas the STEM experts were more attentive to perfect squares 

and arithmetic relationships. 

Table 7 presents the categories of shape that the participants identified in the sorting task. 

The most salient category across all three groups was the number of sides, which all of the 

participants in each group used for grouping in either the first sort or the open sort. The other two 

categories that were also salient across all three groups were shape and size. 

The only category that was more salient for the STEM experts than for the other 

participants was the regular category. Forty-three percent of the STEM experts grouped shapes 



22 
 

 

according to whether they were regular, but only 14% of the middle school students sorted 

according to this principle, and those students did so only in a prompted sort. None of the 

undergraduates sorted according to regularity. There were three more categories that we 

anticipated would be more salient for the STEM experts: similar, symmetry, and tessellate. This 

turned out to be the case only for symmetry (see Figure 6): STEM experts sorted according to 

symmetry more often than middle school students (47% versus 21% for both the middle school 

students and the undergraduate students). Contrary to our expectations, as shown in Figure 6, 

middle school students attended to similarity slightly more than STEM experts did (50% versus 

40%). Only one participant across the three groups attended to tessellations, and this participant 

was a middle school student. 

We anticipated that categories such as size, familiar, and orientation would be ones that 

would be more salient for middle school students, particularly because we consider these 

categories to denote principles of shape that are not mathematically important. However, 

orientation and size were actually slightly more salient for the STEM experts, and the familiar 

category was equally salient across all three groups (36% of each group sorted according 

familiarity of shape). Twenty-seven percent of the STEM experts grouped according to 

orientation, while only 14% of the middle school students and 7% of the undergraduates sorted 

by orientation. All of the STEM experts sorted according size, versus 78% of middle school 

students and 85% of the undergraduates. 

Table 8 presents the categories of shape sorted by which features each group of 

participants attended to in order from the most salient to the least. We found that STEM experts 

noticed symmetry and regularity more than did middle school students, whereas middle school 

students attended to similarity and equal sides more readily.  
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Findings from the sorting and tree building study showed that in general, there were not 

many differences between the middle school students, the undergraduates, and the STEM experts 

in terms of the characteristics of number and shape that they attended to. Furthermore, we found 

that some of the most salient features of number included multiples, parity, primes, and intervals 

(i.e., the relative size of numbers). Several of the more salient features of shape included the 

number of sides, the shape’s size, recognizable features of a shape, and the size of its angles. 

These findings are important in that they reveal particular characteristics that participants find 

noticeable, such as a number’s relative size or a shape’s size, that matter to students but are not 

mathematically important from our perspective. 

Discussion and Concluding Remarks 

The results from our initial study suggest that adolescents’ and experts have very similar 

representations of similarity among (some) mathematical objects. In particular, adolescents did 

notice mathematically significant relations among the objects; part of what makes two numbers 

or shapes similar is that they share properties relevant to mathematical theorems and conjectures. 

Of course, participants did notice less significant properties as well, for example, shared digits of 

numbers, and shared orientation of shapes. There was some evidence that these less significant 

properties played a larger role in adolescents’ representations of number and shape, however, 

such properties also showed up in the STEM experts’ sorts. One possible explanation for this 

result is due in part to the extremely open-ended, unconstrained, nature of our similarity 

measures. Participants, for example, were not instructed to focus on “mathematical” similarity. 

As noted above, part of expertise consists of being able to select an appropriate similarity metric 

for the task at hand. We suspect that experts would tend to ignore irrelevant features (e.g., 

orientation) in the context of evaluating mathematical conjectures. It is less clear whether 
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adolescents would show the same selectivity—exploring the significance of contextual variations 

(e.g., mathematics class) is one aspect included in the next steps for this research program. The 

importance of the current findings, though, is that adolescents do represent mathematically 

significant similarity relations. The pressing question for future research, however, is how they 

use such relations to evaluate conjectures. 

In this chapter we have taken a relatively new perspective (in mathematics education 

research) on adolescents’ use of empirical strategies for evaluating mathematical conjectures. 

Rather than seeing such strategies as limited or as failures to adopt deductive strategies, we 

suggest that there may be value in such inductive strategies. The argument so far has been that 

inductive inference is a powerful and useful form of reasoning, and one that people (especially 

adolescents) seem both disposed to use and use relatively successfully. Our proposal is to 

consider inductive inference about mathematical conjectures as an object of study in and of 

itself. To that end, we seek to better understand the adolescents’ inductive reasoning in the 

domain of mathematics. The empirical work presented in this chapter is a first step in a larger 

project of exploring just how adolescents use empirical examples and inductive methods to 

reason about mathematical objects. In short, we believe inductive inference strategies should 

play an important role in mathematics, and understanding adolescents’ inductive reasoning may 

provide important insight into helping adolescents transition to more sophisticated, deductive 

ways of reasoning in mathematics. 

In closing we want to make a more extended argument in favor of our perspective that 

inductive inference can and should play a productive role in school mathematics? Can this kind 

of reasoning support the transition to more general, deductive ways of reasoning? We began the 

chapter by noting that inductive arguments are commonplace in mathematics classrooms among 
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middle school adolescents, and that more general, deductive reasoning is relatively rare. In 

contrast, we also noted that inductive arguments are important outside of mathematics and that 

adolescents often employ quite sophisticated inductive strategies on many tasks that seem to call 

for deductive inference. The perspective from cognitive science is that people are not so much 

poor deductive reasoners as they are reluctant deductive reasoners. One reason for this reluctance 

may be that (outside of mathematics) we rarely care about the deductive implications of some set 

of facts or propositions. Invariably, it is the empirical significance that people seem to care about 

in most aspects of their lives. Yet, mathematics is different, precisely because of the demand to 

attend to deductive relations. To the question of the proper place of inductive inference in 

mathematics education we offer three responses. 

Although induction is not the accepted form of mathematical inference, it is a form of 

inference. Inductive reasoning can help students develop a feel for a mathematical situation and 

can aid in the formation of conjectures (Polya, 1954). It also provides a means of testing the 

validity of a general proof, especially where students are uncertain about the scope and logic of 

their argument (Jahnke, 2005). A major challenge in mathematics education, however, lies in 

moving students from reasoning based on empirical cases to making inferences and deductions 

from a basis of mathematical structures. By using more accessible inductive inference strategies, 

at least as an intermediate step, students may begin to appreciate that mathematics is a body of 

knowledge that can be reasoned about, explained, and justified. A concern with justification and 

explanation, even if inductively based, may support, rather than undermine, acquisition of more 

formal proof strategies. 

Inductive inferences are important mathematical strategies in their own right. 

Mathematical problems do not always demand formal solution approaches. This point is very 
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much akin to the value of estimation in relation to exact computation. For example, it is very 

useful to be able to guess whether a novel problem will be like some familiar problem; perhaps 

the same solution strategies will work in both cases. One does not need a formal proof that the 

two problems are isomorphic. Of course, the induction may be false and the apparent similarities 

misleading. However, developing better inductive strategies, such as recognizing which 

dimensions of similarity are important, is an important mathematical skill. Even in the context of 

theorem proving, inductive strategies are invaluable as they can often be used to provide 

evidence that suggests a conjecture may be true (or false). Second, the process of producing a 

proof depends on intuitions about the likely value of different steps or transformations. Intuitions 

that certain problems are related, or that some problems are more difficult, are expectations 

derived from experience. The critical point is that some intuitions and perceptions of similarities 

will be more useful than others. If students employ inappropriate inductive strategies they will 

not develop adequate mathematical reasoning skills. 

Although empirical induction is not an accepted form of proof within mathematics, it is a 

form of justification (and as previously discussed, a very common form among students). If 

students are encouraged to reason in more familiar ways, inductively, they may come to 

recognize the limitations of such reasoning with regard to proof as well as the power (in terms of 

proving) of deductive methods. Moreover, reflecting on the strengths and limitations of inductive 

argumentation may be an excellent bridge to introduce deductive methods. For example, 

empirical methods cannot conclusively prove conjectures, but they can conclusively disprove 

them (by exposing counter-examples). The idea of proof by contradiction could flow naturally 

from discussion of this feature of inductive reasoning. A similar trajectory might work for 

introducing mathematical induction as a kind of systemization or grounding of empirical 
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induction. For example, students could be prompted to consider the limits of empirical induction 

and challenged to identify how (or if) mathematical induction overcomes those limits. 

We argue that inductive strategies are an important and valuable part of mathematical 

reasoning. Yet, even from the perspective that inductive strategies are shortcomings in the long 

run, there is overwhelming evidence that students do rely on them. Understanding inductive 

strategies is critical to understanding what students are taking from mathematics instruction. For 

example, teachers illustrate mathematical concepts with specific instances, but what do students 

infer from these particular instances? In such cases, are students led to believe that examples 

suffice as proof? 

The overwhelming message from mathematics education and cognitive science is that 

students do use empirical, inductive, strategies to reason about their world (including 

mathematics). Mathematics education can either ignore such strategies by treating them as 

“errors” to be overcome, or it can ask whether there is some value, as instructional tools, or as 

important mathematical content, to supporting inductive approaches. The perspective from 

cognitive science emphasizes the value of induction; to be a good reasoner is largely to be a good 

inductive reasoner. Mathematics may be different, but that difference does not obviate the need 

for or value of inductive reasoning. The study of adolescents’ inductive reasoning in the domain 

of mathematics is at a very early stage. If the literature on non-mathematical domains is any 

guide, we should expect to see powerful and sophisticated strategies of inference in the domain 

of mathematics. Inductive inference is likely a real source of strength upon which mathematics 

education can build. 
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Grade Empirical General Other 

6 37% 21% 42% 

7 42% 36% 22% 

8 40% 46% 14% 

 

Table 1. Categories of Student Justifications to the Three Odd Numbers Sum item. 
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Grade Empirical General Other 

6 30% 28% 42% 

7 28% 32% 40% 

8 22% 42% 36% 

 

Table 2. Categories of Student Justifications to the Number Trick item. 
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Grade Empirical General Both Other 

6 37% 32% 20% 11% 

7 40% 39% 3% 18% 

8 36% 49% 7% 8% 

 

Table 3. Categories of Student Responses to the Consecutive Numbers Sum item. 
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Principle Description: Arguments 

with… 

Example for conclusions concerning 

“all birds” hve X 

Amount More examples are stronger 

than fewer 

(robins, sparrows, & cardinals have X) > 

(robins have X) 

Diversity Dissimilar examples are 

stronger than similar 

(robins, hawks, & penguins have X) > 

(robins, sparrows, & cardinals have X) 

Typicality Typical examples are 

stronger than atypical 

(robins have X) > (penguins have X) 

Contrast Negative examples are 

stronger than those without 

(robins have X, cats lack X) > (robins 

have X) 

 

Table 4. Some Examples of Criteria for Evidential Strength. 
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Category Meaning 

Parity Even vs. odd 

Multiples 3, 9, 36, 81, 90 are all multiples of 3 

Factors 3, 9, 15, 30, and 90 all go into 90 evenly 

Prime 2, 5, 11, 17 go together because they’re prime 

Composite 25, 30, and 60 are all composite numbers 

Squared 4, 25, and 81 are perfect squares 

Sequence 3, 9, and 15 go together because they go up by 6 

Value of digit 1, 11, 21, and 81 all have a “1” at the same spot 

Intervals 11, 14, 15, 17 are all between 10 and 20 

Number of digits 1, 2, 3, 5, and 9 are all one-digit numbers 

Contains a digit 5, 15, and 51 all contain a 5 so they belong together 

Arithmetic 2, 3, and 5 are a group because 2 + 3 = 5 

Relational 100, 25, 36, & 9 because 100/25 = 4 and 36/9 = 4 
 

Table 5: Number categories and their meanings. 
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Principle Middle 

School 

Undergrad STEM 

Multiples 86% (1) 93% (2) 93% (1) 

Parity 79% (2) 93% (1) 87% (2) 

Prime 50% (3) 71% (3) 80% (3) 

Vale of Digit 50% (3) 29% (9) 47% (6) 

# of Digits 43% (5) 36% (6) 20% (8) 

Intervals 36% (6) 50% (4) 53% (4) 

Contains Digit 29% (7) 43% (5) 13% 

(11) Squared 21% (8) 36% (6) 53% (4) 

Sequence 21% (8) 14% (11) 20% (8) 

Factors 21% (8) 0% (12) 0% (13) 

Arithmetic 14% (11) 36% (6) 40% (7) 

Composite 14% (11) 21% (10) 20% (8) 

Relational 7% (13) 0% (12) 13% (8) 

 

Table 6: Number categories sorted according to salience. 
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Category What it Means 

# of Sides Grouping shapes with the same number of sides 

Angles Grouping shapes on angle size (all have an obtuse) 

Equal sides Two or more equal sides 

Regular Grouping regular shapes together 

Shape Resemblance to a shape (e.g., “arrows”, “sharp”) 

Familiar Common shapes you see in school 

Size Grouping large or small shapes together 

Orientation Grouping according to orientation on paper 

Compose A group of shapes that can be made from others 

Tessellate Grouping shapes that would tessellate  

Similar Grouping similar shapes together 

Symmetry Grouping symmetric shapes together 

Convex/Concave Grouping according to concavity 
 

Table 7: Shape categories and their meanings. 
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Principle Middle 

School 

Undergrad STEM 

Size 78% (2) 85% (3) 100% (3)  

Shape  64% (2)  78% (4) 93% (2) 

Angles 64% (2) 85% (2) 80% (4) 

Similar 50% (5) 43% (8) 40% (11) 

Concavity 43% (5) 14% (8) 40% (7) 

Equal Sides 36% (5) 21% (6) 26% (11) 

Composition 36% (10) 43% (9) 27% (8) 

Familiar 35% (5) 43% (5) 34% (8) 

Symmetry 21% (8) 21% (6) 47% (5) 

Orientation 14% (8) 7% (9) 27% (8) 

Regular 14% (11) 0% (11) 53% (6) 

Tessellate 7% (11) 0% (11) 0% (12) 

# of Sides 100% (1)  100% (1) 100% (1) 
 

Table 8: Shape categories sorted according to salience. 

 


