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Generalization and justification are critical components of mathematical reasoning, with research-
ers and reform initiatives advocating a central role for generalization and proof at all grade levels 
(National Governors Association Center for Best Practices and Council of Chief State School Of-
ficers [NGA Center and CCSSO] 2010); Knuth, Slaughter, Choppin, & Sutherland, 2002; National 
Council of Teachers of Mathematics [NCTM], 2000). These recommendations have led to a wealth 
of studies on how to foster generalizing and proving (e.g., Ellis, 2007b; Knuth, Choppin, & Bieda, 
2009; Stylianides, 2007), as well as curricula geared towards supporting these activities (e.g., Lap-
pan et al., 2006). Research examining students’ abilities to generalize and justify, however, reveal 
difficulties in both recognizing and creating correct general statements and proofs (Chazan, 1993; 
English & Warren, 1995; Kieran, 1992; Knuth et al., 2002). Although these challenges are well doc-
umented, few studies have devoted significant attention to the interplay between generalizing and 
justifying, despite the fact that sophisticated mathematical reasoning depends on deep involvement 
in both activities. How students generalize influences the tools they bring to bear when justifying 
their generalizations, and working to prove a statement could similarly influence students’ subse-
quent generalizing activities. 

Because both generalizing and justifying can influence the development of the other, it is im-
portant to understand the connections between these two activities. This chapter reports on a study 
of seventh-grade students’ generalizations and justifications as they learned about linear relation-
ships. It identifies four mechanisms of change for promoting increased sophistication in students’ 
generalizing and proving, and it shares data illustrating the connections between them.

What Is 
Generalization 
and Proof?

What does it mean for a student to generalize or produce a generalization? In the spirit of Kaput’s 
(1999) view, I define generalization as engaging in at least one of three activities: (a) identifying 
commonality across cases, (b) extending one’s reasoning beyond the range in which it originated, 
or (c) deriving broader results from particular cases. This definition relies on Lobato’s (2003) 
actor-oriented perspective, which requires the observer to abandon any predetermined idea of what 
should count as a generalization and instead to seek to identify how students generate their own 
similarity relations. Rather than asking, “Did the student produce the generalization [that I was 
hoping to see]?”, we ask, “What does the student see as general in this problem or similar across 
these problems [even if it is not what I was hoping for]?” This stance acknowledges the importance 
of mathematical correctness but also values the need to understand what students themselves see 
as general. 

In prior research I developed a taxonomy of the different types of generalizations middle-school 
students created (Ellis, 2007c). The taxonomy distinguishes between students’ activity as they 
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generalize, called generalizing actions, and students’ final statements of generalization, called 
reflection generalizations. Generalizing actions (see fig. 8.1) fall into three major categories. When 
relating, students form an association between two or more problems, situations, ideas, or mathe-
matical objects. They relate by recalling a prior situation, inventing a new one, or focusing on sim-
ilar properties or forms of mathematical objects. When searching, students engage in a repeated 
mathematical action, such as calculating a ratio or locating a pattern, in order to find an element 
of similarity. Students focus on relationships, procedures, patterns, or solutions when searching. 
Finally, extending involves the expansion of a pattern, relationship, or rule into a more general 
structure. Students who extend widen their reasoning beyond the problem, situation, or case in 
which it originated.

Fig. 8.1. Generalizing actions

Reflection generalizations are the general statements (written or verbal) students make after 
engaging in generalizing actions. This taxonomy appears in figure 8.2.

The actor-oriented framework can also inform ways of thinking about proof; one can define 
proving or justifying as a process of removing or creating doubts about the truth of an observation 
(Harel & Sowder, 1998). From this perspective, a researcher can try to understand what students 
view as convincing arguments. Harel and Sowder developed a framework to identify students’ 
proof schemes, categorizing individual schemes of doubts, truths, and convictions. Five proof 
schemes from their framework applied to the students in the study reported here (see fig. 8.3). The 
first two proof schemes, authoritarian and symbolic, fall under the external conviction family. 
Under these schemes, conviction is obtained by the word of an authority, or the symbolic form of an 
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argument. Under the empirical family of proof schemes, conjectures are validated or invalidated by 
specific examples (inductive) or sensory experiences (perceptual). The final proof scheme, called 
transformational, falls under the deductive category because it includes the validation of a conjec-
ture by means of logical deductions.

Fig. 8.2. Reflection generalizations

EXTERNAL CONVICTION Examples

Authoritarian: The main source of 
conviction is a statement made by a 
teacher or appearing in a text.

Student: [Looking at a table of data]. Since the y-values increase by the same number each 
time, this will be a straight line.
Interviewer: Why?
Student: That’s what Ms. R told us.

Symbolic: Students view and manipulate 
symbols without reference to any 
functional or quantitative reference.

[Given three connected gears that rotate 6, 4, and 3 times respectively, students decide that 
another triple could be 12, 8, and 6 rotations.]
Teacher: Why is that valid?
Student: There’s a pattern in all of them. So if you do one thing to the small one, you have to 
do it to the middle one and the big one to keep the ratios the same.
Teacher: Why does that work?
Student: It’s kind of like changing fractions from 1/2 to 3/6. It’s the same thing, just in 
different form.

Fig. 8.3. Relevant proof schemes from Harel and Sowder (1998)
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EMPIRICAL Examples

Inductive: Students demonstrate a 
conjecture’s truth by showing that it 
works with a few examples.

Student 1: All of these pairs must be the same speed because cross-multiplying gives the 
same answer each time.
Teacher: How do you know that means they’re the same speed?
Student 1: Because 27 times 5 and 7 and 1/2 times 18 equals the same thing. 
Student 2: I tried it for all the pairs in the table and it works every time.

Perceptual: One relies on perceptual 
observations; for instance, making 
judgments based on a picture. 

[The student creates a graph from a table of ordered pairs: (2, 9); (5, 22.5); (12, 54); (16, 72)].
Student: It couldn’t be a straight line.
Interviewer: Why not?
Student: If you made your graph, it doesn’t look like it’d be a straight line. (Sketching a 
graph that appears curved). 

DEDUCTIVE Example

Transformational: “The transformational 
proof scheme is characterized by (a) 
consideration of the generality aspects of 
the conjecture, (b) application of mental 
operations that are goal oriented and 
anticipatory, and (c) transformations of 
images as part of a deductive process.” (p. 
261) These proofs represent appropriate 
deductive reasoning.

[A student explains why he thinks (3/4)m = b should describe the relationship between two 
gears with 12 and 16 teeth.]
Student: Since there’s 3/4 of the teeth on the small one, the big one always has 1/4 teeth to 
make up every turn. Making it, the big one turns 3/4 of a turn every time the small one turns 
once. And so, say it went through 12 teeth on the small gear and 12 on the big gear. That’s 
only 3/4 of a turn for the big gear, while it’s a full turn for the small gear. 

The student could mentally rotate the gears in coordination matching teeth to teeth, and then 
multiplicatively compare the remaining teeth to the total teeth. He operated on the gears 
and their rotations, and could anticipate the results of those operations. While he provided a 
specific example, he also understood that the ratio would remain constant for any number of 
turns.

Fig. 8.3. Continued

Method The study was situated at a public middle school located near a large southwestern city. Seven sev-
enth-grade pre-algebra students were selected to participate in a fifteen-day teaching experiment, 
in which the students met for an hour and a half each day. Every student who volunteered for the 
study was accepted, which resulted in a sample of six girls and one boy. One student was an English 
language learner. All sessions were videotaped and transcribed. 

The purpose of the teaching experiment was to explore students’ generalizations and justifica-
tions as they engaged in the context of realistic problems about linear growth. The sessions there-
fore focused on real-world situations involving gear ratios and constant speed. For the first seven 
days, the students worked with physical gears to explore gear ratios. For the remaining eight days, 
the students worked with the speed simulation computer program SimCalc Mathworlds, which stu-
dents could use to generate and test conjectures about how different combinations of distance and 
time affected the characters’ walking speed. Figure 8.4 provides a sample of the types of problems 
that the students encountered.

Review of the entire data set revealed major trends in the growth of students’ generalizing. 
Early in the sessions, students focused on generalizing from immediate relationships between 
quantities; in the later sessions, they generalized across different quantitative situations in order to 
establish more global rules about linearity. In addition, students’ justifications evolved over time 
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from those that were symbolic and empirical to those that were transformational. In attempting 
to capture the nature of increased sophistication, students’ later generalizations and justifications 
were contrasted to those that they had produced earlier. The four mechanisms for change emerged 
as a way to explain this growth in sophistication. 

Connected Gears Problem

You have 2 gears on your table, one with 8 teeth and one with 12 teeth. Answer the 
following questions:

1. 	 If you turn the small gear a certain number of times, does the big gear turn more 
revolutions, fewer, or the same amount? How can you tell?

2. 	 Devise a way to keep track of how many revolutions the small gear makes. Devise a 
way to keep track of the revolutions the big gear makes. How can you keep track of 
both at the same time?

3. 	 How many times will the small gear turn if the big gear turns 64 times? How many 
times will the big gear turn if the small gear turns 192 times?

Frog Walking Problem

The table shows some of the distances and times that Frog traveled. Is he going the same 
speed the whole time, or is he speeding up or slowing down? How can you tell?

                                           Distance                                   Time

	 3.75 cm	 1.5 sec

	 7.5 cm	 3 sec

	 12 cm	 4.8 sec

	 15 cm	 6 sec

	 40 cm	 16 sec

Fig. 8.4. Sample teaching-experiment problems

Results Results from the teaching experiment suggest that relationships between generalizing and proving 
were rarely self-contained; students did not generalize in one way, provide a particular type of 
justification for that generalization, and then move on. Instead, they built up increasingly sophis-
ticated generalizations and justifications over time, each mathematical action contributing to the 
evolution of the other. The four mechanisms are a way to describe how generalizing and proving 
can mutually influence one another to support more sophisticated reasoning. In this section, the 
four mechanisms are presented first, and they are then exemplified in a data episode in which stu-
dents develop, explain, and justify a set of equivalent ratios.

Four mechanisms 
for change

The first mechanism is the action/reflection cycle, in which students engage in a generalizing ac-
tion, formalize the action as a reflection generalization, and then shift to a new generalizing action. 
Although students’ initial generalizations were often limited or even incorrect, subsequent cycles of 
generalizing built on their previous attempts to increase the sophistication of their generalizations.
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The second mechanism is mathematical focus, which refers to how the students focused their 
attention (rather than the mathematical focus intended by the teacher or a particular problem). 
Students’ focus affected both how they generalized and the types of proofs they attempted. In 
particular, when students focused on number patterns, they generalized by searching for patterns, 
extending by continuing, and made statements of principles related to patterns. Their associated 
justifications relied on the external symbolic and empirical proof schemes 71 percent of the time. In 
contrast, when students focused on relationships between quantities (measurable attributes such as 
length, distance, time, rotations, or speed), they generalized by searching for the same relationship 
and made reflection generalizations such as statements of continuing phenomena and statements 
of general principles related to quantities. Impressively, the associated justifications for these gen-
eralizations relied on the transformational proof scheme 67 percent of the time. These results sug-
gest that the mathematical properties to which students attend can either inhibit or promote more 
sophisticated reasoning, with a quantitative focus being more effective than a focus on number 
patterns that are disconnected from the problem’s context.

The development of the transformational proof scheme was one of the aims of the teaching 
experiment, because it represents a shift away from example-based reasoning to deductive argu-
mentation. Three types of generalizations were connected to the transformational proof scheme: 
(a) the action of searching for the same relationship, (b) the action of extending, and (c) the state-
ment of a continuing phenomenon. The connection between these three types of generalizations 
and the transformational proof scheme is the third mechanism of change, generalizations promot-
ing deductive proof.

The fourth mechanism addresses the role the transformational proof scheme plays in promot-
ing more powerful generalizations. In particular, deductive arguments promoted shifts towards 
two types of reflection generalizations: (a) statements of continuing phenomena, and (b) new gen-
eral principles such as rules, patterns, and global rules. This finding suggests that students can 
begin with generalizations that may be limited, but after justifying with the transformational proof 
scheme, they may subsequently develop more accurate, sophisticated generalizations.

Data episode: 
Explaining 
equivalent ratios

The lesson in this episode began with the following problem: “Say Clown walks 15 cm in 12 sec-
onds. Find as many different ways as you can to make Frog walk the same speed as Clown.” Stu-
dents developed a number of same-speed pairs by operating on a 5 cm:4 s unit, and concluded that 
any multiple of 5 cm in 4 s would represent the same speed. Then one student, Timothy, realized 
that there were other same-speed pairs beyond multiples of 5 cm in 4 s. He explained, “Oh! You 
multiply whatever the centimeters are by 4/5 to equal the seconds. So it doesn’t matter if they’re 
multiples [of 5 cm:4 s].” Timothy’s realization was a reflection generalization, the identification of 
a general rule, but none of the students could explain why it worked:

Teacher:	 Now I have not heard a justification why this works.

Julie:	 Because the numbers 12 and 15.

Timothy:	 12 over 15 equals 4/5.

Dani:	 You can simply and that’s why. You can simplify 15 over 12.

Julie:	 You can simplify it down.

Teacher: 	 So those are all forms of 12 and 15?

Julie:	 Yeah. It has to be a form of 12 and 15.

Teacher:	 Why?

Timothy:	 I don’t know. It just works!
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The following day began with a follow-up requesting students to justify their reasoning by 
drawing a picture. Timothy drew a graph (see fig. 8.5), which he viewed as a way to show that both 
Clown and Frog walked the same rate. The teacher asked Timothy to think about what was the 
same across two points in his graph, (2.5, 2) and (20, 16), and Timothy explained, “They’re all the 
same centimeters per second. The amount of centimeters that Frog’s gonna run in a certain amount 
of time.” The teacher’s question was designed to direct Timothy’s attention to sameness across the 
points, which likely afforded his generalizing action of searching for the same relationship because 
he had to think about what relationship held between (2.5, 2) and (20, 16). This led to Timothy’s 
reflection generalization, which was the identification of the property common to all the points. 
Timothy was then able to identify the line’s slope as 4/5.

Fig. 8.5. Timothy’s graph showing same-speed points

Timothy:	 So that means, since the slope is 4/5, this [gesturing to the y column] is 4/5 of this 
[gesturing to the x column]. Basically, whatever y is, is 4/5 of whatever x is.

Teacher:	 Oh, and how does that 4/5 slope relate to what you’re figuring out with speed?

Timothy:	 Because let’s see . . . for every centimeter it goes, it’s going like, 4, er, yeah 4/5 of a 
second I think . . . So for 15 cm, 4/5 of 15 would equal 12. So since there’s 15 cm, 4/5 
of 15 cm, for every centimeter it’s going 4/5 of a second, or 12 s.

Timothy’s statement “whatever y is, is 4/5 of whatever x is” represents an identification of a 
general pattern. When asked to connect the pattern to the phenomenon of speed, he produced a 
different generalization. Timothy identified a continuing phenomenon, pointing to the dynamic 
relationship between centimeters and seconds. In addition, he made a connection between 4/5 and 
same speed; the 4/5 pattern now had meaning in terms of the quantities in the situation. When the 
group convened, Timothy shared his justification with the group, explaining: 

The graph’s showing the different amount of centimeters and different amount of time 
they could have taken. And since, as long as you did like one of these [gesturing to the 
line] or beyond that, you would always end up having them go along at the same speed. 
Because since 15 and 12 is also on that line. And so . . . since 15 and 12 is also on that 
line, and you do anything else that’s on that line, you’ll be going at the same speed. Just 
one of them will stop at a certain time.

Timothy’s reasoning had some elements of the transformational proof scheme; he could imagine 
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any given point as representing the given speed. In addition, Timothy’s statement that “you do 
anything else that’s on the line” suggests that he anticipated that any point on the line, not just the 
ones drawn from his table, would represent the same speed. Moreover, Timothy explained to his 
classmates that “the slope means that whatever x goes up by . . . 4/5 of that is how much y goes up 
by.” This marks an important difference from Timothy’s prior statement. He is no longer stating 
that y is 4/5 of x; instead, he now understands that any increase in y will be 4/5 of the same increase 
in x. This is a statement of a general pattern, as before, but it is a more powerful general pattern; it 
applies to all linear functions of the form y = mx + b rather than just functions of the form y = mx.

Meanwhile, another pair of students, Larissa and Maria, produced a drawing rather than a 
graph (see fig. 8.6). The top number line shows Frog’s journey and the bottom shows Clown’s 
journey, with the boxed numbers representing the number of seconds corresponding to the number 
of centimeters on each number line. For example, the boxed 4.0 directly above and below the 5 on 
each line shows that at 5 cm, both Frog and Clown had traveled for 4 seconds.

Fig. 8.6. Larissa and Maria’s diagram of Clown and Frog walking

The students explain how their picture shows that Frog and Clown walked the same speed:

Maria:	 Okay, we figured out that every 8, 0.8 s, no, every second you go 0.8 cm.

Timothy:	 I think it’s the other way around.

Dora:	 Every centimeter you go 0.8 s.

Timothy:	 Because that would explain the 15 cm, 12 s. Because the smaller amount of seconds.

Maria:	 Okay. And in the 4 s the Frog reached 5 cm, and that was the speed of the Clown. In 
12 s, 15 cm. In 8 s, the 10 cm. In 4 s, he reached the 5 cm.

Teacher:	 Excellent. Now Larissa, can you explain how this picture shows that Frog and Clown 
are going the same speed?

Larissa:	 Because for the, when they’re at 4, both of them are at 4 s. But since the frog stops, 
he’s finished . . . but the clown keeps going and from 0 to 5 it jumped 4 s . . . and from 
5 to 10 it also jumped 5 cm and 4 s. And from 10 to 15, it jumped 5 cm and also 4 
seconds. So the proportion stays the same throughout the whole thing even though 
Frog stopped.

Maria produced the reflection generalization of an identification of a continuing phenomenon: 
For every 1 cm the clown walked, it took 0.8 s. (Although she stated it incorrectly, Maria’s written 
work showed the correct relationship, suggesting she misspoke). So Maria made a new statement 
about the speed situation, one that the students had not previously realized. Furthermore, Larissa’s 
justification revealed elements of the transformational proof scheme, because she could imagine 
the Frog completing his journey at the same proportion as the Clown’s completed journey. When 
subsequently asked if she could generalize her argument to any two same-speed characters, Larissa 
said, “If the two objects are walking the same speed, then the proportion throughout . . . their 
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walking will stay the same even if one of the objects stops.” Through discussing the picture and her 
justification, Larissa could now state a more general idea. She engaged in the generalizing action 
of extending by removing the particulars, because she had extended the idea of keeping the same 
proportion to any same speed pair. Larissa had also produced the reflection generalization that if 
the speed is the same, the proportion will remain the same: a global rule.

Mechanisms for 
change in practice

The following sections describe how the four mechanisms for change occurred in students’ activity.

Mechanism 1: Action/Reflection

On the prior day, Timothy had identified a general rule: multiply the centimeters by 4/5 to get the 
seconds. By creating a graph and focusing on sameness across the points, Timothy’s generalizing 
action of searching for the same relationship led to another reflection generalization—the iden-
tification of a general pattern: “Whatever y is, is 4/5 of whatever x is.” Once he tried to connect 
this pattern to speed, Timothy realized that for every centimeter the Frog walked, it took 4/5 of a 
second. This reflection generalization is different from the others. First, it is an identification of a 
continuing phenomenon, and so it is stated in a different form. But more importantly, it was the 
first time that one of the students stated a connection between the general pattern and the speed sit-
uation. The 4/5 now carried a quantitative meaning for Timothy. Another cycle of generalizing and 
justifying produced Timothy’s final reflection generalization, the statement of a different general 
pattern conveying the meaning of slope. This is arguably more sophisticated than the generaliza-
tions that preceded it, because now Timothy understood that not only are seconds proportional to 
centimeters, but the change in seconds is proportional to the change in centimeters. 

Meanwhile, Maria also produced a statement of a continuing phenomenon, and this general-
ization also made sense of the speed situation whereas the girls’ prior generalizations did not. It is 
possible that the girls’ generalizing action of extending, which occurred when they repeated and 
partitioned the 5 cm:4 s unit to produce their diagram, helped solidify the continuing phenome-
non generalization. Subsequently, when asked to generalize to any same-speed situation, Larissa 
engaged in extending by removing particulars, which resulted in the identification of a global rule. 
Larissa has now developed an inference about the meaning of same speed, and her understanding 
is not restricted to one particular problem.

Mechanism 2: Focus

The episode shows how a focus on quantities can result in generalizations that connect number 
patterns to situations, as well as in justifications with the transformational proof scheme. Before 
the students made a strong connection to speed on the second day, their attempts to justify why 
multiples of 4/5 resulted in same-speed values were dependent on attempts to manipulate symbols 
they did not fully understand, and thus were limited to the symbolic proof scheme. Once the stu-
dents focused on the quantities of centimeters and seconds, they began to connect their patterns 
to the speed phenomenon. This is seen in Timothy’s description of the slope as a representation of 
speed, and in Maria and Larissa’s statement that the clown took 0.8 s to walk 1 cm. Furthermore, 
attending to the relationships between centimeters and seconds helped the students develop more 
powerful justifications and make new inferences about the problem.

Mechanism 3: Generalizations promoting deductive proof

The students’ generalizing actions of searching (as Timothy searched for the same relationship 
across points) and extending (as Larissa and Maria expanded the 5 cm:4 s ratio into a more general 
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structure) appeared to strengthen their understanding of the invariant multiplicative relationship 
between centimeters and seconds. All of the students also identified continuing phenomena, which 
supported a focus on a more general dynamic relationship between quantities and the identification 
of a property that extends through time. These three types of generalizing were the ones most 
closely tied to the use of the transformational proof scheme.

Mechanism 4: Influence of deductive reasoning on generalizing

Both Timothy’s justification and Larissa and Maria’s justification enabled the identification of new 
general principles, patterns, and global rules. Timothy’s explanation of how his graph represented 
same speed values focused his attention on the ratio of increases, which resulted in a new gener-
alization. Larissa’s act of justifying helped her generalize further by extending her reasoning to 
any same-speed pair. In general, there were two major types of generalizations that appeared after 
students produced deductive justifications: identification of general principles, such as algebra-
ic or global rules, and identifications of continuing phenomena. These episodes suggest that the 
relationship between generalizing and justifying is not unidirectional. Students do not produce a 
generalization, justify it, and then move on. Instead, the act of justifying itself can push students’ 
reasoning forward in ways that encourage further generalizing. 

Conclusion and 
Implications for 
Teaching

A critical instructional goal is to help students develop correct algebraic generalizations and 
deductive forms of proof. This study suggests that while it is important not to ignore these goals, 
students’ incorrect or partially correct generalizations and unsophisticated proof attempts can 
serve as an important bridge towards achieving them. Given the growing emphasis on proof in 
the middle grades, it could be helpful to better understand which types of generalizing activities 
can support more powerful justifications, particularly in guiding lesson development. In order to 
encourage more deductive argumentation, teachers could design problem situations that encour-
age students to (a) search for similar relationships across problems, cases, or contexts; (b) extend 
their reasoning about patterns, relationships, and phenomena; and (c) develop statements about the 
quantitative relationships they see in the problem context.

Results from the study also address the role of justifying as a support for better generaliz-
ing. Recent pedagogical recommendations encourage teachers to present tasks in which algebra 
students find and generalize patterns (NCTM, 2000). These recommendations reflect an assump-
tion that generalizing patterns is sufficient support for producing appropriate proofs, but research 
demonstrates that it is not (Knuth & Elliott, 1998; Lannin, 2005). A more productive approach 
to proof instruction may challenge the typical generalization/proof sequence. Students in the 
study initially engaged in generalizing activities that were at times limited, partially incorrect, or 
otherwise unproductive. However, as they attempted to explain their generalizations and create 
increasingly deductive justifications, students were able to revisit their generalizing actions, build 
on them, and ultimately construct ones that were more powerful. The students’ engagement in 
increasingly sophisticated generalization/justification cycles suggests that teachers might consider 
incorporating justifying early into the instructional sequence, rather than expecting students to 
produce their final generalizations before moving on to proof. The role of proof could therefore be 
viewed as a way to help students generalize more effectively, rather than as an act that necessarily 
follows generalization.

In order to facilitate early engagement with proof, teachers should emphasize problems 
that allow for appropriate justification. In the context of linear functions, this would mean 
de-emphasizing situations in which the data are contrived or inexact in favor of situations with data 
that students can investigate, manipulate, and make sense of. Moreover, problem situations encour-
aging a focus on relationships between quantities instead of number patterns or procedures alone 
could provide a more fruitful setting to encourage productive generalizing and justifying. Teachers 
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also play an important role in helping their students focus attention on quantities and the language 
of quantitative relationships. Although students often attend to number patterns alone, even within 
the context of a quantitatively rich problem, teachers can intervene to draw students’ attention back 
toward the quantitative referents, and to incorporate the language of quantities into the classroom 
discussion by asking students to shift from pattern descriptions to phenomenon descriptions.

The four mechanisms of change show that students can, and do, move from less productive 
actions to more powerful generalizing and justifying behaviors over time. Student strategies or 
solutions that may appear to be unacceptable due to their limited nature could be the very ones that 
ultimately support more powerful ideas over time. 
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