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The Influence of Reasoning with
Emergent Quantities on Students’

Generalizations

Amy B. Ellis
University of Wisconsin-Madison

This paper reports the mathematical generalizations of two groups of algebra stu-
dents, one which focused primarily on quantitative relationships, and one which
focused primarily on number patterns disconnected from quantities. Results indicate
that instruction encouraging a focus on number patterns supported generalizations
about patterns, procedures, and rules, while instruction encouraging a focus on quan-
tities supported generalizations about relationships, connections between situations,
and dynamic phenomena, such as the nature of constant speed. An examination of
the similarities and differences in students’ generalizations revealed that the type of
quantitative reasoning in which students engaged ultimately proved more important
in influencing their generalizing than a mere focus on quantities versus numbers. In
order to develop powerful, global generalizations about relationships, students had
to construct ratios as emergent quantities relating two initial quantities. The role of
emergent-ratio quantities is discussed as it relates to pedagogical practices that can
support students’ abilities to correctly generalize.

Expanded Notions of Algebra: The Importance of Quantitative
Reasoning

Approaches to teaching algebra have recently expanded to include an emphasis on
developing students’ ability to create powerful generalizations. For instance, the
National Research Council notes that in addition to symbol manipulation, school
algebra should also include representational activities and generalizing and justify-
ing activities (Kilpatrick, Swafford, & Findell, 2001). This shift in emphasis is one

Correspondence should be addressed to Amy B. Ellis, University of Wisconsin—Madison,
Department of Curriculum and Instruction, 225 N. Mills Street, Madison, WI 53706.
E-mail:aellis1@education.wisc.edu



440 AMY B. ELLIS

response to research showing that traditional algebra courses focusing on strate-
gies for symbol manipulation, simplifying expressions, and solving equations yield
poor results in overcoming the well-documented difficulties students experience in
understanding algebra (Booth, 1988; Kieran, 1992; Stacey & MacGregor, 1997).
Expanded notions of what should constitute school algebra have since become
a focus of research and discussion (Kaput, 1998; NCTM, 2000; van Reeuwijk,
in press; Romberg, 1998). While researchers’ views overlap and differ in their
emphases, there is general agreement that algebraic activity should move beyond
symbol manipulation to also focus on reasoning with patterns, quantities, and real-
world situations. These views are reflected in the development of curricula that
promote such activities in the algebra classroom (Coxford, Fey, Schoen, Burrill,
Hart, Watkins et al., 1998; Lappan, Fey, Fitzgerald, Friel, & Phillips, 1998).

One alternative approach is based on the introduction of algebraic ideas through
an exploration of quantities and quantitative relationships (Fujii & Stephens, 2001;
Kaput, 1995; Steffe & Izsak, 2002). Thompson (1994) defined a quantity as one’s
conception of a measurable quality of an object or a phenomenon. It is composed
of an object or event, a quality of the object, an appropriate unit or dimension,
and a process for assigning a numerical value to the quality. Length, area, volume,
cardinality, speed, temperature, and density are all attributes that can be measured
in quantities. Quantities are constituted in people’s conceptions of situations, rather
than the objects or situations themselves.

While this definition may seem simple, it assumes that the student has isolated
an object and a relevant attribute to be measured (Thompson, 1990). This condi-
tion is often not as obvious to children as it is to their teachers. Hall and Rubin
(1998) caution “it is a central conceptual problem for many students to distinguish
between different types of quantity . . . and to find strategies that can generate one
of these quantities from another two” (p. 199). Studies from the modeling literature
demonstrate students’ difficulties in establishing quantities and finding ways to
measure them; for instance, Lehrer and Schauble (2004) found that when students
measured heights of individual plants, they could not readily determine either the
attribute they were supposed to focus on or its measure. Students may focus on
only one salient object, ignoring other relevant quantities (Lobato & Thanheiser,
2002). These difficulties are likely tied to a lack of opportunity to regularly par-
ticipate in contexts that allow students to consider qualities of measures and
attributes relevant to mathematical questions (Petrosino, 2003; Petrosino, Lehrer,
& Schauble, 2003). In response, Petrosino (2003) advocates providing students
with opportunities to discover which properties of measure need to be emphasized
in measuring an attribute. These experiences can help children understand that
measure incorporates ideas such as iteration, origin, and equal units.

The quantitative reasoning approach emphasizes operating with quantities and
their relationships. A quantitative operation is a conceptual operation by which one
conceives a new quantity in relation to one or more already-conceived quantities.



EMERGENT QUANTITIES AND GENERALIZATIONS 441

Quantitative operations are nonnumeric and emerge from one’s evaluation of a situ-
ation, while arithmetic operations are used to evaluate quantities (Lobato & Siebert,
2002). For example, one might compare quantities additively, by comparing how
much taller one person is to another, or multiplicatively, by asking how many times
bigger one object is than another. The associated arithmetic operations would be
subtraction and division. Although researchers may occasionally blur the distinc-
tion between reasoning quantitatively and reasoning with real-world situations, the
two are not identical. The manner in which a student interacts with a given situation
determines whether he or she is reasoning quantitatively rather than the nature of
the situation itself. Thus a student could attend to number patterns extracted from a
real-world situation and be engaged in number pattern reasoning alone. Similarly,
a student could examine relationships between quantities in a highly unrealistic,
abstract, or imaginary situation and still be engaged in quantitative reasoning.

Thompson (1994b, April) suggests that students develop mathematical concep-
tions through quantitative reasoning rather than through the study of algorithms or
procedures. Quantitative operations originate in actions, or activities of the mind
(Piaget, 1967). As a learner interiorizes actions, creating mental operations, these
operations allow one to comprehend situations representationally. They enable
the learner to draw inferences, for example, about relationships that may not be
present in the situation itself. If all mental actions are tied to experience, then any
meaningful learning in mathematics must be grounded in quantitative referents.
As Steffe and Izsák (2002) remark, “We regard quantitative reasoning as the basis
for algebraic reasoning” (p. 1164).

This approach towards algebraic reasoning marks a departure from earlier con-
ceptions that characterize mathematics as the study of patterns and relationships,
regardless of their origin (AAAS, 1993). In Thompson’s (1994b) words, “This
view is problematic because it suggests that numbers, shape, and relationships are
given, that they are the primary starting point for mathematical inquiry” (pp. 7–8).
Rather than asking students to study objects that have not emerged from their
own mental activity, researchers are beginning to emphasize the need to build
from students’ existing mental operations, which could be achieved by focusing
on quantities in realistic situations. For this reason, quantitative reasoning has be-
come more closely tied to what it means to reason algebraically (Fujii & Stephens,
2001; Kaput, 1995; Steffe & Izsák, 2002).

Quantitative Reasoning and Generalization

Studies investigating algebra students’ generalizations with number patterns sug-
gest that students experience difficulty recognizing and forming correct gen-
eral statements (English &Warren, 1995; Kieran, 1992; Lee & Wheeler, 1987).
Although students can recognize multiple patterns, they may not distinguish those
which are algebraically useful. In addition, the perception of a valid number pattern
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does not mean that students will generalize that pattern correctly (Blanton & Ka-
put, 2002, April; Ellis, 2007a; English & Warren, 1995; Lee, 1996; Lee &Wheeler,
1987; Orton & Orton, 1994; Stacey, 1989; Stacey & MacGregor, 1997). In par-
ticular, students tend to focus on recursive relationships, describing the nth term
in relationship to the preceding term(s), which can impede their ability to create
explicit algebraic generalizations (Pegg & Redden, 1990; Schliemann, Carraher,
& Brizuela, 2001; Szombathelyi & Szarvas, 1998).

In contrast, some studies exploring how students reason with algebraic relation-
ships in quantitatively-rich situations have shown that students can notice patterns,
identify relationships, and create generalizations that all hold quantitative meaning
for them (Curcio, Nimerofsky, Perez, & Yaloz, 1997; Ellis, 2007b; Hall & Rubin,
1998; Lobato & Siebert, 2002; Noble, Nemirovsky, Wright, & Tierney, 2001; van
Reeuwijk & Wijers, 1997; Thompson, 1994). For instance, in Lobato and Siebert’s
(2002) study, students participated in a teaching experiment focused on constant
speed situations. The participants initially developed patterns involving doubling
and tripling the distance and time one character traveled to produce same speed
values, which they eventually generalized into an argument that one could take
different multiples of the character’s distance and time values without changing his
speed. One student was then able to form a composite “10 cm in 4 s” unit (Lamon,
1995), which was adopted by the other students. They then further generalized by
partitioning and iterating the composite unit to determine that the character could
repeat his journey any number of times, or could travel a fraction of his journey,
without changing his speed. The students’ reasoning was strongly connected to
the speed situation; they attended to the relevant quantities while discussing their
ideas, and their generalizations frequently referenced characters walking a certain
number of centimeters in a certain number of seconds.

Studies focused on models and modeling similarly report students’ abilities to
engage in multiple iterations of model development in order to create emergent
quantities such as ratios and proportions (Lesh & Harel, 2003; Lesh & Lehrer,
2003). For instance, Sherin (2000) describes students’ representations of the emer-
gent quantity of varying types of speed. Students were charged with the task of
developing models of different types of motion described verbally, and Sherin
conveyed the students’ development, adaptation, extension, and evolution of var-
ious representations of motion. By developing representations grounded in their
understanding of emergent quantities, students were able to create meaningful
generalizations. Lehrer, Schauble, Strom, and Pligge (2001) reported on a study
in which students developed an understanding of density as a constant ratio. The
students were able to build on their ratio reasoning to determine which types of
solids and liquids would float or sink in water. In another study, Lehrer, Schauble,
Carpenter, and Penner (2000) described students’ focus on changing ratios in order
to investigate plant growth. In each of these cases, students’ experientially real
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world is used as a meaningful base for the development of mathematical concepts
and skills.

Kaput (1999) anticipated the type of student understanding described above
when he noted that “students are more likely to begin by generalizing from their
conceptions of situations experienced as meaningful and to derive their formal-
izations from conceptual activities based in those situations” (p. 137). However,
merely placing students in quantitatively-rich situations and asking them to gener-
alize will not necessarily result in students noticing relationships that are correct,
helpful, or even meaningful to them. While the above examples from the literature
make the case that quantitatively meaningful generalizations are possible, other
studies demonstrate that these generalizations do not always occur. Much of the
literature related to modeling describes students’ difficulties in making sense of
realistic, messy data (Metz, 2004; Petrosino, 2003) and modeling quantities that
are emergent rather than explicit (Lehrer & Schauble, 2004). Metz (2004) noted
that students tend not to think their findings will generalize when they develop
their own data, as they view their knowledge as mediated by their study and its
limitations.

In one example, Noble et al. (2001) described a case in which the initial pat-
terns developed by the students were not helpful to their attempts to extend their
reasoning. The students developed number tables in which they noticed multiple
patterns, but initially struggled to create algebraically useful generalizations. The
authors noted that the patterns the students noticed were such that were such that
one pattern did not seem more significant or useful than another. van Reeuwijk
and Wijer (1997) reported a similar phenomenon; although students eventually
developed generalizations closely tied to relevant quantities, their initial percep-
tions were more numeric. In each of these examples, students focused on number
patterns that did not carry quantitative meaning in part because they reasoned with
artifacts, such as number tables, that were disconnected from situational attributes.
Later, when they worked more closely with their conceptions of the quantitative
relationships through other mechanisms such as pictures, diagrams, or physical
portrayals, their generalizations were more quantitative than numeric.

This paper reports the mathematical generalizations of two groups of stu-
dents, one which focused primarily on quantitative relationships, and one which
focused primarily on number patterns disconnected from quantities. The types
of generalizations the students produced differed according to their focus: those
who attended to number patterns created generalizations about patterns and rules,
while those who attended to quantities created generalizations about relationships
and dynamic phenomena such as gear relationships and speed. Results indicated,
however, that a focus on quantities was ultimately less important than the type
of quantitative reasoning in which students engaged. The differences in the stu-
dents’ generalizations are reported, followed by a discussion of the importance of
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a particular type of “emergent-ratio quantitative reasoning” that relies on forming
emergent quantities from ratios of initial quantities.

The Generalization Taxonomy

Ellis’s (2007a) generalization taxonomy describes the different types of general-
izations students develop when reasoning algebraically. In the spirit of Kaput’s
(1999) view, generalization is defined as engaging in at least one of three activities:
a) identifying commonality across cases, b) extending one’s reasoning beyond the
range in which it originated, or c) deriving broader results about new relation-
ships from particular cases. In each case, a student’s reasoning is not limited to
the confines of one particular problem, situation, or set of numbers. Instead, one
extends an idea to a wider range of phenomena, and in doing so, generalizes that
idea; Piaget & Henriques (1978) called this generalizing assimilation. While the
notions of extending one’s reasoning and deriving broad results can be easily tied
to generalizing assimilation, the connection may appear less obvious for the first
criterion, identifying commonality across cases. However, in identifying a com-
mon element across cases, one must consider that element as it relates to more
than one specific case. One must either incorporate more than a single instance
of a phenomenon into a concept, or be able to locate evidence of the concept in
more than one instance. In either case, this perspective requires broadening one’s
notion of the concept itself. In identifying commonality, one therefore considers
the idea in question in a broader context than the particular case in which it arose,
which is another form of extending an idea to a wider range of phenomena.

Evidence for generalization is not pre-determined, but instead relies on identi-
fying the similarities and extensions that students perceive as general. This view
of generalization is more expansive than the typical approach in which a formal
verbal or algebraic description of a correct rule is required as evidence of general-
ization (Orton & Orton, 1994; Stacey & MacGregor, 1997). This wider definition
allows researchers to capture a greater number of student acts as generalizing.

Figures 1 and 2 outline the types of generalizations identified in the taxonomy
(for full descriptions, see Ellis, 2007a). The taxonomy distinguishes between stu-
dents’ mental activity as they generalize, called generalizing actions, and students’
final statements of generalization, called reflection generalizations. Generalizing
actions describe learners’ mental and mathematical actions—they are mental acts
that are inferred through a person’s activity and talk. An examination of problem-
solving behavior, such as the mathematical operations a student employs while
working with a problem, a student’s apparent mathematical focus, the properties
and relationships a student attends to, or the strategies in which a student engages,
can lead to a description of the types of mental actions the student appears to
employ in his or her attempts to generalize. The behaviors themselves do not con-
stitute the generalizing actions, but contribute to the researcher’s determination
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FIGURE 1 Generalizing actions.
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FIGURE 2 Reflection generalizations.

of the type of generalizing actions in which the student may be engaged. The
inferred mental acts are characterized as generalizing actions in part to distinguish
them from the verbal or written expressions that comprise students’ reflection
generalizations.

Students’ generalizing actions are characterized in three major categories: relat-
ing, searching, and extending. When relating, one forms an association between
two or more problems, situations, ideas, or mathematical objects. Relating can
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include recalling a prior situation, inventing a new one, or focusing on similar
properties or forms of mathematical objects. When searching, one engages in a
repeated mathematical action, such as calculating a ratio or locating a pattern,
in order to locate an element of similarity. Students may focus on relationships,
procedures, patterns, or solutions when searching. Finally, the act of extending
involves expanding a pattern, relationship, or rule into a more general structure.
Students who extend widen their reasoning beyond the problem, situation, or case
in which it originated.

Reflection generalizations occur in the form of a verbal or written statement, or
in the use of a previously developed generalization in a new problem. Statements of
generalization can take the form of identifications or statements of general patterns,
properties, rules, or common elements, or definitions of classes of objects. The
implementation of a prior generalization in a new problem or context is categorized
as influence, either of a prior idea or strategy or a modified idea or strategy.

Many reflection generalizations mirror generalizing actions. For instance, state-
ments of sameness may accompany any of the generalizing actions of relating, and
statements of general principles may accompany searching actions. The actions
of noticing similarity, searching for similarity, or extending reasoning can result
in declarations of sameness, articulations of rules and principles, or definitions of
classes. The declarations are the reflection generalizations, and the mental actions
that lead to them are the generalizing actions.

Methods

The study consisted of two parts. Part A consisted of a classroom observation and
interview study, and Part B consisted of a teaching experiment, both situated at
a public middle school in a large southwestern city. The school has an ethnically
diverse student population: out of its 1,000 students, approximately 40.8% are
Hispanic, 28.2% are Caucasian, 16.7% are Filipino, 6.9% are African American,
6.3% are Asian American, 0.7% are Pacific Islander, and 0.4% are American
Indian. Approximately 15% of the students are English language learners.

Part A: Classroom Study

The classroom study participants consisted of 34 eighth-grade algebra. Seven
members of the class were also recruited for individual interviews. The students
were recruited with the participating teacher’s help on the basis of their good class
attendance, their ability to verbalize their thought processes, and grades of C or
higher. Those who had average-to-high grades and could articulate their thinking
were desirable as interview participants because they were likely to have devel-
oped powerful generalizations in class that they could subsequently explain and
discuss in the interview. All 7 students were relatively strong proportional reason-
ers as evidenced by their ability to successfully negotiate a series of proportional
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reasoning tasks. Three of the students were males and 4 were females. Four of the
students were Hispanic, 2 were Caucasian, and 1 was Asian American. Two of
the students were English language learners while 5 were native English speakers.
Gender-preserving pseudonyms were used for all participants.

Classroom observations occurred during twelve consecutive class sessions de-
voted to linear functions. Each session lasted 1 h and 50 min, and ordinary class-
room lessons were videotaped and transcribed. During the linear functions unit,
the participating teacher relied on the use of several activities from the Connected
Mathematics Project (CMP) (Lappan et al., 1998). CMP is a problem-centered
curriculum that embeds mathematical ideas in realistic and engaging problems
designed to help students develop both understanding and skill. The official text
for the course was a more traditional Algebra I book (Larson, Boswell, Kanold,
& Stiff, 2001), upon which the teacher relied for in-class practice problems and
homework. The participating teacher employed a combination of real-world situa-
tions and problems in which equations or patterns did not refer to a specific context.
The students sometimes worked individually in a whole-class environment, and
they also participated in small-group activities at least once during each class
period. Students engaged in activities such as collecting empirical data, building
mathematical models for collected data, developing their own graphs and tables
to describe phenomena, and practicing skills related to graphing points, solving
equations, and simplifying algebraic expressions. Figure 3 provides an overview
of the activities students engaged in and the mathematical ideas addressed as they
were explored in the classroom during the observed unit.

Although the cooperating teacher relied on small-group activities tied to real-
world problems, her instructional focus with the entire class was calculationally
oriented. She emphasized procedures and skills related to solving equations and
simplifying algebraic expressions, and led the classroom discussion in a way that
relied on direct calculational questions and responses. For that reason, students had
few opportunities to make observable generalization in the classroom setting, and
over 80% of their generalizations therefore occurred in the individual interviews.

The 7 interview students each participated in one 60-min individual interview,
which was videotaped and transcribed. The goal of the semi-structured interviews
(Bernard, 1988) was to determine what sense the students made of the general-
izations they developed, what types of explanations students provided for them,
and what types of extensions and limitations students saw for their own general-
izations. Thus, the model for the interviews involved taking some of the general
statements students had developed in class and devising task questions address-
ing them. Based on the student’s work, the tasks and the interviewer’s questions
were varied, but each task required the student to extend his or her reasoning to a
larger set of cases or numbers. Figure 4 includes sample interview items posed to
students.
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FIGURE 3 Overview of the linear functions unit.

Part B: Teaching Experiment

Seven seventh-grade pre-algebra students were selected for the teaching exper-
iment on the basis of the same criteria used for the interview participants, but the
recruitment population was seventh-graders rather than eighth-graders in order to
select participants who had not yet received instruction on linear functions. Only
7 students from the recruitment pool of 70 volunteered for the course, and every
student who volunteered was accepted. Six students were female and 1 was male.
Like the interview students, the teaching-experiment students were strong propor-
tional reasoners as evidenced by their ability to successfully negotiate a series of
proportional reasoning tasks. Three students were Hispanic, 3 were Caucasian,
and 1 was Asian-American. One student was an English language learner, and the
other 6 were native English speakers.

All teaching-experiment sessions were taught by the author and were video-
taped and transcribed. An observer also took detailed field notes (Clark, 1997).
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FIGURE 4 Sample interview items.
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The primary purpose of a teaching experiment is for researchers to gain direct
experience with students’ mathematical reasoning, learning, and development
(Cobb & Steffe, 1983). The teaching-experiment setting allows researchers to
construct models of students’ mathematics through the creation and testing of hy-
potheses in real time while engaging in teaching actions. Through this approach,
it was possible to continually develop, test, and refine conjectures about students’
generalizations as they solved problems. The teaching experiment occurred on 15
consecutive school days for 1.5 h each day. In order to gain more access into each
individual student’s understanding, 30-min informal discussions also occurred
with 1 student at the end of each lesson, resulting in a total of two discussions
with each student.

One goal of the teaching experiment was to explore the nature and development
of students’ reasoning in the context of realistic problems about linear growth.
Three specific aims were (a) to help students develop a ratio as a measure of an
emergent quantity such as speed or gear ratios, (b) to provide opportunities for
students to create generalizations, and (c) to encourage students to develop appro-
priate justifications for their strategies, conclusions, solutions, and generalizations.
The students were explicitly told that they would be encouraged to explain their
thinking and justify their solutions and approaches. Grounded in the hypothesis
that meaningful learning must be tied to quantitative referents (Thompson, 1988),
the sessions emphasized exploration of the quantities available in two real-world
situations involving linearity: gear ratios and constant speed. The students worked
with gear ratios for the first 7 days of the teaching experiment, and worked in
a speed context for the remaining 8 days. These two contexts were employed in
order to encourage the possibility that students would generalize across the two
cases in order to develop more global conceptions about the nature of linearity. Be-
cause the gears provided a context that previous students had found more tractable
in terms of experimenting with different ratios, it occurred first in order to help
students develop constant rates of change before tackling the more complex speed
situation.

Two physical artifacts ultimately proved important in influencing how the
students reasoned. The first was a set of physical gears that the students could
directly manipulate in order to experiment with ways of coordinating rotations. The
second was a computer program called Simcalc Mathworlds (Roschelle & Kaput,
1996), which simulated speed scenarios showing two characters walking across the
screen at constant speeds. The use of the software allowed the students to create and
test conjectures about how changing distance and time would affect the character’s
speed.

Figure 5 provides an overview of the activities students engaged in and
the mathematical ideas addressed as they were explored in the teaching
experiment.
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FIGURE 5 Overview of the teaching-experiment unit.

Data Analysis

Analysis of the data from both parts of the study followed the interpretive
technique in which the categories of types of generalizations were induced from
the data (Glaser & Strauss, 1967; Strauss & Corbin, 1990). The initial coding pass
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relied on open coding, in which instances of generalization were initially identified
as they fit the definition described earlier (the identification of commonality across
cases, the extension of reasoning beyond the range in which it originated, and
the derivation of broad results from particular cases). Subsequent review of the
transcripts of the teaching-experiment sessions, classroom-study sessions, and
individual interviews led to the development of emergent categories of types of
generalizations. When categories of types of generalizations did not fit with new
data, new categories emerged. The categories were then subjected to subsequent
passes through both the teaching-experiment data set and the classroom-study
data set until theoretical saturation had been achieved. Three complete passes
through the data set were required in order for the categories to stabilize, and all
generalizations were ultimately re-coded with the final categorization scheme.

Once categories of generalization were identified, videotaped classroom and
teaching-experiment data were revisited in order to understand how the instruc-
tional environments may have supported and constrained the development of
students’ specific generalizations. A two-part study was conducted in order to ex-
amine the nature of students’ generalizing under a more varied set of experiences
so as to develop a taxonomy describing as many generalizing acts as possible.
The classroom teacher’s approach to linear functions included a focus on number-
patterns, and one goal of the study was to examine students’ generalizations as
they reasoned with number patterns. Meanwhile, the teaching experiment pro-
vided another way to create, observe, and model the types of generalizations not
typically seen in the literature—generalizations related to a focus on quantities.
In addition, although the classroom teacher’s use of CMP (Lappan et al., 1998)
materials suggested the possibility that students might engage in the production of
meaningful mathematical relationships, the teaching experiment provided a way
to maximize the likelihood that students would focus on quantities and quantitative
relationships.

Although the results described in this paper emerged from a two-part study, it
was not designed as a comparison study. Conducting a comparison study would
have been impractical in part because any comparison between two treatments
would require a large number of participants to sustain validity. Working with the
number of participants required would have been beyond the scope of a qualitative
analysis. In addition, it would have been necessary to develop a study in which the
two treatments were as similar as possible in terms of the students, the experience
and ability of the teacher, the length and intensity of the lessons, and other factors
that would otherwise confound any comparison results. However, ultimately the
two-part study did prove serendipitous in allowing for the examination of the
relationship between a focus on quantities and the type of generalizations pro-
duced. This examination became possible precisely because, in contrast to the
teaching-experiment students, the classroom-study students seldom attended to
the quantities tied to real-world problems.
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Results and Discussion

The results are organized in two sections. In section 1, similarities and differences
in students’ generalizations across the two-part study are presented and discussed.
Section 2 presents a detailed episode in which a student reasoned directly with
quantities, but produced generalizations that more closely mirrored those of the
students who focused on number patterns alone. The episode is followed by a
discussion of the distinction between two types of quantitative reasoning, direct-
measures reasoning and emergent-ratio reasoning.

Section 1: Similarities and Differences in Generalizations

Although students ultimately reasoned with both number patterns and with
quantities in both parts of the study, number-pattern reasoning that was discon-
nected from quantitative referents was prominent in the classroom study and
quantitative reasoning was prominent in the teaching experiment. The data re-
vealed four major differences in students’ generalizing activity (see Figure 6): (a)
the generalizing action of relating occurred more often in the teaching experiment
than in the classroom study; (b) the generalizing action of searching occurred in
both parts of the study but instantiated itself in different ways, (c) the generalizing
action of extending instantiated itself differently in the two parts of the study;
and (d) the reflection generalizations of statements of continuing phenomena and
sameness occurred more often in the teaching experiment while statements of
global rules occurred more often in the classroom study. These differences, cou-
pled with similarities across the two groups, suggest that students’ generalizations
were closely tied to whether they focused on number patterns or quantities.

A. The Generalizing Action of Relating

When students engaged in the action of relating, they created relationships
or made connections between two or more problems, situations, ideas, or math-
ematical objects. Relating includes recalling a prior situation, inventing a new
one, or focusing on similar properties or forms of present mathematical objects.
Relating occurred only three times in the classroom study, while it occurred 68
times in the teaching experiment. In an example of a classroom-study case of
relating, Carla tried to determine the value of y in a table of ordered pairs given
that x was 2/5 (Figure 7). Carla had previously determined that she could find y

for x = 1/4 by dividing 73 (the direct relationship between x and y) by 4. Carla
struggled with x = 2/5, in part because she could not appeal to any quantitative
understanding of the table. She ultimately decided that this was a similar case to
the previous problem in which she had divided 73 by 4. She then converted 2/5
into 0.4, and (incorrectly) divided 73 by 0.4 to obtain 182.5 for y. In so doing
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FIGURE 6 Counts of students’ generalizations in the teaching experiment and the classroom
study.

Carla established a relationship between the two problems, and then implemented
her numeric strategy to the new problem in order to determine y for x = 2/5.

When the teaching-experiment students engaged in the generalizing action of
relating, they established relationships of similarity between two situations, such
as the speed situation and the gears situation, or between one of those situations
and a prior personal experience. The prominence of relating actions was likely
tied to both the students’ real-life familiarity with experiential qualities as they
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FIGURE 7 Carla’s table of x- and y-values.

reasoned with quantities in mathematical situations, and to the manner in which the
teaching experiment was run. For example, when working with gears, the students
tried to explain why a large gear made fewer rotations given the same turning
speed as a small gear. Several students related the rotations of the gears, which
they could visually observe, to prior experiences of running in circles around a
track:

Timothy: [The big gear] would turn less because it has a bigger circumference to
make a whole turn. And the small one has a smaller circumference to go around.

Julie:‘Cause like if you were to take the circumference of the two, and lay them out,
this one would be shorter, be like a shorter distance to run or something. ‘Cause like,
when people are running a track, um, it’s luckier if you’re um, on the inside of the
track because, it doesn’t—it’s not a, such a big lap, than being on the outside.

The students could relate their understanding of the rotations of a gear to their
experience of running around a track at a given pace, and more generally, the
students’ actions of focusing their attention on relationships between quantities
appeared to trigger memories of previous experiences with similar qualities.

The design of the teaching experiment deliberately facilitated acts of relating
by immersing students in two quantitatively-rich situations, gears and speed. The
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speed scenario immediately followed the gears scenario, and students encountered
a number of problems with similar structures or numbers in both contexts. These
similarities encouraged the creation of connections between gears and speed. In
particular, when the students moved to speed situations, they remained focused on
the invariant ratio between centimeters and seconds, which prompted the recall of
another invariant ratio—the rotations of one gear to the rotations of another gear.
Because both gear ratio and speed are instantiations of a constant multiplicative
relationship, students may have been able to relate their current activity to prior
activities, detecting a similarity between the two situations.

In contrast, when students in both parts of the study focused on number patterns,
they did not have a way to connect their current number-pattern reasoning to
prior experiential familiarity with quantities. In particular, the classroom-study
teacher seldom prompted the students to construct ratios or reflect on constant
multiplicative comparisons. Thus it may have been more difficult for the students
to notice similarities between tables when the only similarity was an undetected
constant ratio (or ratio of differences) between x andy. The students did not focus
on these. Instead, they focused on the different types of patterns they found in the
tables. A pattern such as “when x goes up by 5, y goes up by 8” might not have
seemed similar, from the students’ perspective, to a pattern such as “y increases
by 10 each time.”

The teaching-experiment students’ frequency of relating both situations and
objects led to many reflection generalizations on sameness and the influence of
prior ideas, which is not seen in the classroom-study students (see Figure 6). By
relating either situations or objects, they focused on what was the same across
those situations and objects, which often led to the use of a previously developed
strategy. The teacher-researcher also explicitly encouraged those connections,
often by asking students to reflect on what was the same or different across
problems or even mathematical objects within a problem. For instance, when one
student graphed points relating various distance-time pairs for a character walking
a constant speed, the teacher-researcher asked, “And what about two different
points on the line, like say, this point and this point. What is the same about
these points?” Timothy answered, “y is always 4/5 of x. It’s the same.” This is
an identification of a common property across the points, and the discussion then
veered towards questioning whether it would be appropriate to extend the graph
into negative x- and y-values. As the students debated whether one could have
negative distances and times, they then began to engage in relating actions by
recalling other situations with negative values.

B. The Generalizing Action of Searching

Students engaged in the generalizing action of searching for sameness in both
parts of the study, although in the classroom study searching was observed almost
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exclusively in individual interviews. The major difference occurred in what types
of searches the students conducted. Those who focused on number patterns alone,
mainly but not exclusively in the classroom study, focused their searches on
patterns, while those who attended to quantities, mainly in the teaching experiment,
focused their searches on relationships.

The searching counts in Figure 6 can be somewhat misleading. Although the
number of videotaped hours was roughly equivalent for both parts of the study, the
data from the teaching experiment were richer and more abundant. The classroom-
study students did not have many opportunities to publicly share their generaliza-
tions in class, and therefore the data on their generalizing was largely limited to
one-on-one interviews. As a result, the differences in numbers can be attributed
in part to the fact that there were three times as many generalizations detected
in the teaching-experiment data. Nevertheless, the scarcity of searching for the
same relationship in the classroom study suggests a substantive difference despite
the overall difference in total cases of generalizing, and the greater frequency of
searching for the same pattern in the classroom study is also noticeable given that
the total number of generalizations overall was so much smaller.

Searching for patterns. When searching, students performed a repeated
action in order to determine an element of similarity. Searching for the same
pattern involved identifying a pattern and then seeking to determine whether it
remained stable. For instance, the classroom-study student Carla examined the
following table (Figure 8):

FIGURE 8 Table of non-linear x- and y-values.
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Carla: I kind of see a pattern between the y, but not the two numbers, like x and y.
Int: What do you see between the y?
Carla: Um, I see that it jumps by 1 each time you go up. Because like it’s, here wait.
Because 9, because 14 minus 9 is 5, but then 20 minus 14 is 6.
Int: Uh huh.
Carla: And so I think that it jumps 1 in the y category. So that it’s like the last number
plus 1.

Carla could not identify a relationship between x and y, but did locate and
generalize a stable pattern in the table, which was not connected to any quantities.
Because the participating teacher had introduced different types of number tables
in the classroom on the day Carla was interviewed, the interviewer used some of
those tables as well as other quantitative situations to examine Carla’s thoughts on
linearity. The teacher’s emphasis on well-ordered, naked number tables was ori-
ented towards helping students understand the need to attend to the recursive rates
of change for both x- and y-values, since previously the students had erroneously
focused only on the y-values. The teacher’s provision of many practice situations
in working with a variety of different tables helped the students develop a fair
amount of proficiency with noticing and searching for patterns, but these patterns
did not necessarily represent quantitative relationships.

Searching for relationships. The teaching-experiment students worked
with the same table of ordered pairs (Figure 9) in two different contexts. In the
first context the values represented gear rotations and the students initially focused
only on the number patterns in the table. At this stage, the teacher-researcher did
not heavily intervene but instead allowed the students to work together to make
sense of the table in small groups. The decision to introduce the same table within
the speed context was prompted by a desire to help the students make a connec-
tion between the two situations, gears and speed, and thus focus on the quantities
themselves rather than the numbers alone. Therefore, a week later, the students en-
countered the same numbers once again, but this time the left column represented

FIGURE 9 Table of gear rotations.
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the number of centimeters a character walked, and the right column represented
the number of seconds it took to walk those centimeters. The teacher-researcher
decided to ask the students to determine if the character appeared to walk the same
speed throughout the table, or if he sped up or slowed down. The nature of this
question further supported an emphasis on quantities rather than numbers alone.
As a result, the students approached the table in a way that characterized a focus
on relationships between the quantities rather than a focus on number patterns:

Timothy: I found that no matter what, the seconds over the centimeters is 2/3. So
he’s walking the same pace.

Timothy took the seconds in each pair and divided by the centimeters, and
found that each time the result was two-thirds. The teacher-researcher pushed him
to describe how he had concluded that the character walked the same speed, and
Timothy explained:

Timothy: Because Clown is walking 2/3 of a second for every centimeter he walks.
And so every single time it’s the same thing.
Teacher: Now, I was asking you to look at this table to see if all of the pairs were the
same. What is sameness here? What does same mean?
Larissa: The relationship.
Timothy: They all have the same relationship between seconds and centimeters.
Teacher: Which translates to what?
Timothy: That either if you look at it centimeters to seconds, the centimeters are 1
and 1/2 of the seconds, or the seconds are 2/3 of the centimeters.
Teacher: Okay. And what does sameness mean in terms of the situation?
Larissa: It’s, he’s going the same speed throughout the whole time.

Timothy’s search for sameness focused on the relationship between centimeters
and seconds, and this relationship appeared to be tied to his quantitative compre-
hension of the situation. By identifying the invariant ratio across the different pairs,
Timothy was able to reflect on the different number pairs representing the same
emergent quantity, which supported his eventual development of an equivalence
class of ratios. This process exemplifies the more general trend in which students
who focused on the quantities represented by numbers generalized by searching
for and finding relationships between those quantities. In addition, the teacher-
researcher’s emphasis on pushing the students to describe what sameness meant in
terms of the situation further encouraged students to focus on relationships rather
than just patterns.

C. The Generalizing Action of Extending

Extending by expanding and removing particulars. While students from
both parts of the study engaged in the action of extending, there were no instances
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of extending by expanding or by removing particulars in the classroom study.
However, the fact that these actions manifested themselves only in the teaching
experiment is probably more strongly related to the teacher-researcher’s actions
than to whether the students were reasoning with quantitative relationships. When
students extend by expanding the range of applicability or by removing particu-
lars, they note that a property, pattern, or relationship can be applied to a larger
range of cases. This action might occur through extending one’s reasoning within
the same problem or into a new area. It could also include the deliberate removal
of contextual details from a description of a phenomenon in order to state a global
case.

None of the students in either group appeared to be naturally inclined to ex-
tend their reasoning in these manners, regardless of their focus on quantitative
relationships. When the teaching-experiment students did extend by expanding or
removing particulars, they generally did so at the teacher-researcher’s urging. The
teaching-experiment students faced a continued social need to generalize their
reasoning; the classroom culture was centered on promoting and valuing general-
izing and justifying actions. Thus the teacher-researcher would sometimes ask the
students to generalize an idea, relationship, or strategy to any two gear pairs, or to
any characters walking the same speed. Through deliberate concentration, the stu-
dents could do this, but these actions did not occur spontaneously. As an example,
let us return to the episode described in the Relating section in which a student
graphed points relating various distance-time pairs for a character walking a con-
stant speed. After the student identified the slope of various graphs as representing
speed, the teacher-researcher asked the student to generalize his argument:

Teacher: Timothy, can you make a general statement about how the slope of a graph,
any graph, is related to the speed of a character, any character?
Timothy: Um, they’re basically going to, as long as the graph is linear, uh, as long
as the uh rule is linear, um, it’s always gonna be whatever of x is gonna equal y, or
whatever of y is gonna equal x.
Teacher: And what’s that got to do with speed?
Timothy: Yeah. Um, basically it’s gonna be continuously the same fraction for the
slope. And basically that means it’s gonna be the same units per whatever, uh per
whatever amount of time.

Extending by continuing and operating. Students who located number
patterns, in both parts of the study, could often extend those patterns to generate
new cases, either by continuing them or by operating on the patterns (for instance,
by doubling or halving a given ratio to create new ordered pairs in a table). Brianna,
a classroom-study student, demonstrated both generalizing actions as she worked
with the following table (Figure 10):

After having searched for a pattern and identified that y increases by 7 for
each unit increase in x, Brianna continued the pattern to generate several new
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FIGURE 10 Brianna’s table of linear values.

pairs: “If the next one was 7, the next one would be . . . 54. If it was 8, it would
be . . . 61.”

Brianna then operated on the 1:7 increase in order to generate the pair (1 1
2 , 15 1

2 ):

Brianna: If, on these you’re adding 7. I just . . . added . . . 7. Oh. I added 7 but I took
the halves, so it’d be 1 and a half, and half would be, like 1. So um, I took the halves
and if you added 7, that’d be 12. I just took the halves, and 7, so it’d be . . . uh, 7/2 is
. . . 3 and a half. Yeah. So I just added 3 and a half to 12.

Because the generalizing actions most prominent when students focused on
number patterns were the search and location of patterns and procedures, it follows
that students also focused on those very patterns when extending their reasoning.

D. Reflection Generalizations: Statements of Continuing Phenomena,
Global Rules

Continuing Phenomena. Only three statements of continuing phenomena
were recorded in the classroom study, while 50 such statements appeared in the
teaching experiment data. The prominence of the statements of continuing phe-
nomena in the teaching experiment may be tied to the ways in which the students
reasoned with quantities. A statement of a continuing phenomenon reflects a focus
on the dynamic relationship between quantities; it is characterized by a sense of
continuation, motion, or extension. For instance, when working with the table in
Figure 9 in the speed setting, Dora remarked “for each centimeter it takes the
clown 2/3 of a second.” Similarly, when describing a pattern in gear rotations,
Timothy explained “The big one moves 2/3 of a turn every time the small one
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FIGURE 11 Brianna’s extended table.

turns a full turn.” These continuing phenomena statements indicate that students
could form an image of two co-varying quantities (Thompson, 1994).

The teaching-experiment students reasoned with the emergent quantities speed
and gear ratios. Both of these quantities reflect a dynamic relationship between two
initial quantities. Speed is characterized not only by a ratio relationship between
distance and time, but it is also a continuous phenomenon. The students had
prior experience with speed as continuing motion through space, and in class they
watched characters walk across a computer screen at different speeds. When the
students in the teaching experiment turned their attention to comparing centimeters
to seconds in order to reason about speed, they referenced the dynamic nature of
speed in their generalization statements. Similarly, the gear-ratio quantity was one
that students could observe by turning attached gears of different sizes. They could



464 AMY B. ELLIS

see this quantity by observing how much faster one gear would turn when it was
attached to a larger rather than a smaller gear. When the students turned the gears,
they did so by spinning a handle smoothly around; they did not stop the rotation
after each gear had made a complete turn. Thus the gear ratio was characterized
by smooth, continuous motion. This dynamic understanding made its way into the
students’ language as they produced statements of generalization.

The prominence of statements of continuing phenomena in the teaching exper-
iment could have been connected to the type of quantities with which the students
reasoned as well. For instance, the quantity of steepness, as related to the ratio
of height and length, does not suggest the same type of continuous motion as
suggested by speed or gear ratios. Similarly, when the students in both parts of
the study reasoned with number patterns alone, they most frequently did so in the
form of tables of numbers. These tables contained patterns that did not suggest a
sense of continuation; instead the students detected and stated static patterns.

Statements of general principles: global rules. The classroom study stu-
dents demonstrated a high incidence of global rule generalizations in their indi-
vidual interviews. This frequency could have been related both to their focus on
numbers and to the participating teacher’s instructional style. The students’ focus
on numbers resulted in the construction of generalizations that were tied to the
nature of the number tables they encountered. For instance, Juliana stated that a
table of ordered pairs only represents linear data if “it’s in a continuous pattern
that’s the same every time.” She had only encountered well-ordered tables in class,
and when she and her classmates collected real-world data such as the number of
layers of paper in a bridge and the number of tiles it could support, they compiled
their data in well-ordered tables and then almost immediately moved towards
focusing on patterns in the table, rather than on the situation represented by the
table. Lacking opportunities to explore how quantities changed in relationship
to one another, the students developed global rules that depended on particular
organizations of data.

Moreover, the participating teacher encouraged a focus on patterns and the cre-
ation of general rules about those patterns—in fact, the only significant instances
of classroom study student generalizing recorded in the classroom, in contrast
to during the individual interviews, occurred in the “general principles: pattern”
and “general principles: rule” categories. For instance, the participating teacher
(PT) introduced a well-ordered table of data comparing the cost of an item and its
post-tax price, and asked students to find patterns:

PT: Now. Let me ask you this. Did anybody see patterns? See if your group can
articulate a pattern.
Miguel: Yeah, it went up by 1.08.
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PT: All right, did this group find a pattern? Mario, let’s hear about your pattern.
Mario: You go up 1.08 each time.
PT: You did what?
Mario: Add.
PT: Add 1.08. 1.08 + 1.08 + 1.08 + 1.08. So there’s a pattern in the y-column, yes.
Who has something slightly different? All right, Bob.
Bob: You can multiply x by y, no, x times 1.08.
PT: You can multiply x times 1.08. All right. That’s certainly something we noticed.

The participating teacher ultimately encouraged students to make decisions
about whether data were linear based on more general rules: “Now let me ask you
this question. Each time, is the price rising by a steady amount? Yes, everybody’s
sure of that. Stand up if you think this situation would graph as a line.” All of
the students stood, and the teacher ended by explaining that a steady increase
indicates linear data. The classroom emphasis on finding patterns and then devel-
oping rules about linearity was reflected in the students’ generalizing in individual
interviews.

Statements of general principles: patterns. One similarity that emerged
in students’ reasoning across both parts of the study was that they produced
statements of general patterns when they attended to number patterns. In many
cases students stated the patterns they had identified, often as a result of the
generalizing action of searching for the same pattern. For instance, when Brianna
first encountered the table above (Figure 10), she searched for a pattern and then
remarked “You’re always adding 7 on the y side and you’re always adding 1
on the x side.” Similarly, when Carla stated “it’s like the last number plus 1,”
her statement was the reflection generalization of identifying the general pattern,
which mirrored her generalizing action of searching for the pattern.

The differences that emerged across the two-part study did not exclusively
fall along the boundaries of “classroom-study generalizations” versus “teaching-
experiment generalizations.” Instead, when students across both parts of the study
reasoned with number patterns, they searched for patterns, extended those patterns
by continuing them or operating on them, and they developed final statements of
general patterns. When students focused on quantities, they were more likely to
engage in relating actions, they searched for relationships, and they developed
statements of continuing phenomena. However, there was one instance in which
a classroom-study student attended to quantities and quantitative relationships,
but his generalizations were more similar to his classmates who attended only to
number patterns. This instance is described in Section 2, and is followed by a
discussion of the importance emergent-ratio quantitative reasoning in influencing
students’ generalizations.
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Section 2: Direct-Measures Versus Emergent-Ratio Quantitative
Reasoning

Although both groups of students occasionally focused on quantities and their
relationships, the type of quantitative reasoning in which students engaged ul-
timately proved more important in influencing their generalizing than a simple
distinction between a focus on quantities versus number patterns. The following
episode presents a case in which a classroom-study student engaged in a type of
quantitative reasoning that resulted in generalizations very similar to those seen by
students who focused on number patterns alone. It is included to highlight the dif-
ference between two aspects of quantitative reasoning, direct-measures reasoning
and emergent-ratio reasoning, and to demonstrate the importance of these aspects
in influencing how students generalize. In the episode, Ricardo reasons with two
quantities in a simulation of a real-world situation—but he does not construct a
third emergent quantity as a ratio of the two initial quantities. The episode demon-
strates Ricardo’s difficulty making logical inferences about the relationships in the
problem. As a result, his generalizations are incorrect statements of general rules
and patterns.

The Episode: Bridges and Tiles

The classroom study students worked with a CMP-derived activity called
“strength of bridges.” Students built bridges from sheets of notebook paper, and
compared the number of layers of paper in the bridge with the number of tiles
the bridge could hold. Ricardo’s group had found that when comparing the num-
ber of tiles a bridge could hold with how many layers the bridge consisted of,
there was a roughly stable relationship between the layers and the tiles. They
concluded that each additional layer could hold seven additional tiles, which they
formalized as y = 7x, where x is the number of layers and y is the number of
tiles.

In his individual interview, Ricardo stated a general pattern: “The more layers
you put, the more tiles you could probably hold.” Reasoning with the quantities of
the number of layers and the number of tiles, Ricardo created a table that showed
his opinion of what the values might look like if his group had been able to take
perfect data without any measurement error (Figure 12):

When asked if he saw a pattern or relationship in the table, Ricardo responded,
“Well, I would think each one, like, each one . . . hmm. I’d say about near 10 or
11 or 12 tiles are, each time probably are added. 10.” Ricardo’s new reflection
generalization was another more specific statement of a general pattern. He wrote
out a new table showing what he meant (Figure 13):

Ricardo explained why he made a change in his table at 4 layers:
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FIGURE 12 Ricardo’s initial table of layers and tiles.

Ricardo:But I was thinking at five it, since there were so many layers, it’d probably
be more than double. Like, probably, four and five. So I would say this would equal
about, probably 15 up. And this, probably well 60 if it was evenly.

By “more than double”, Ricardo referred to the idea that the tiles would in-
crease by more than 10 for an additional layer. To the reader, a pattern of adding

FIGURE 13 Ricardo’s revised table of layers and tiles.
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10 each time is different from a pattern of doubling each time. However, for
Ricardo, “adding 10” and “doubling” appeared to be identical. So he again re-
vised his statement of a general pattern to one in which the tiles eventually begin
to increase by more than 10 for each additional layer. Ricardo explained, “The
paper, see, one, two and three, there’s really not much of a difference between
the layers. But as you go on to four, it gets more thick, and then five, even
thicker.” While Ricardo began to form a more precise relationship between the
two quantities, this relationship was not a ratio. Note, however, that Ricardo
repeatedly referenced the idea of number of layers and thickness, indicating
that his mathematical focus was on those quantities rather than on the num-
bers alone as seen in the tables he created. Moreover, he reasoned with mental
images of the way those quantities would change, and generalized based on his
images.

The following question was posed to determine the robustness of Ricardo’s
pattern:

Int: So what if you had a whole bunch of layers, like what if you had 50 layers?
Ricardo: Well it’s gonna be kind of hard to hold on this type of paper. But if it were
a lot bigger, it’d probably be able to hold, hmmm. Probably close to 690 if it were
really big. For 50 layers.
Int: How’d you come up with that?
Ricardo: Well, 5 times 10 is 50, so 600. And I added a little bit more because you
add more as you go up.

The last pair in Ricardo’s table was (5, 60). After multiplying 60 by 10 to
get 600, Ricardo appeared to add the extra 90 tiles because he did not think
the relationship should be linear. He also shifted from thinking about adding 10
tiles for each layer to multiplying by 10 before compensating with the extra 90
tiles. His reasoning has shifted from an additive to a multiplicative comparison,
but it remained a within-measures comparison rather than a between-measures
comparison (Vergnaud, 1983).

Int: So would that continue if you had . . . say you had something huge, like 5,000
layers?
Ricardo: Hmm. It’d probably go up more than 10, I think.
Int: Since it’s so many layers?
Ricardo: Uh huh.
Int: How much, do you think?
Ricardo: I’d say about probably 30, in one stack. It could probably go up, probably
even 50 or 60.

By “go up”, Ricardo appeared to mean two things: (a) increasing by that many
from one layer to the next, and (b) multiplying the number of layers by the value
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such as “50 or 60.” When asked to come up with a number, Ricardo wrote “7100
tiles.” Ricardo explained his reasoning as follows: “I mean 50, I multiplied it by 100
to get 5000. So I multiplied 690 by 100 and added 200 to it.” Ricardo multiplied
incorrectly by a factor of 10, instead multiplying 690 by 10 to get 6900. The
addition of 200 extra tiles was due to Ricardo’s belief that the relationship should
not be constant. Note that as Ricardo focused on extrapolation, his attention shifted
from thinking about layers and tiles to the numbers themselves. His language now
appears more similar to those of the students discussed above who focused on
number patterns, such as Carla.

When asked to state a direct relationship between the number of layers and the
number of tiles, Ricardo explained:

Ricardo: Probably from one, two and three you could do, um, 1 times 10 equals,
like, you can multiply by 10, ‘cause it goes up by 10.
Int: What would that look like, just for the 1, 2 and 3, if you wrote that?
Ricardo: You could just put 1 times 10 equals 10. Two times 10 equals 20. If you go
on, it’s, hmm, equals . . . I’m just gonna put it like that. [Writes “4 × 10 +x = y.”]
Int: Okay. So you wrote 4 times 10 plus x equals y. So what does that mean?
Ricardo: Because I’m not really sure what to put here (points to the x) because
it’s gradually going up. So I just put that and it can equal anything if the x equals
something different than y, can equal . . .

Ricardo first stated the reflection generalization of a statement of a general
pattern, that “it goes up by 10.” He also attempted to describe the “adding a few
extra” idea he had incorporated throughout the episode with x, culminating in the
reflection generalization of the general rule 4 × 10 +x = y. He was then asked
what x should be for 4 layers:

Ricardo: I just added an extra 5 in there ‘cause, I didn’t add any 5’s here, I just added
10, um, times, to that by 10, so, it should equal 45.
Int: Ah, I see. And so, could you use this equation that you wrote, 4 times 10 plus x

equals y, for the 5th layer?
Ricardo: Uh huh.
Int: How would that work?
Ricardo: It’d be 5 times 10 plus x equals y, but then the x would equal 10. I think it
probably gradually, you add. Okay it goes like, you add 5, then 10, then 15, then 20.
Probably like that.

Ricardo’s new general rule was that x could increase by five each time, which
represents a further formalization of his earlier attempts to compensate. Further,
he was able engage in the generalizing action of extending that idea by continuing
the pattern to create new pairs. While Ricardo’s rule for 4 or more layers is actually
linear (T = 15L – 15, for L ≥ 4), there is no evidence that he saw it as such. After
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using his equation to determine how many tiles 50 layers would hold, Ricardo was
asked to justify his equation, which prompted a return to thinking about quantities
rather than just numbers:

Ricardo: Well, to me I think it is, in my opinion. But other people might think
different.
Int: Okay, and how could you justify your opinion?
Ricardo: Well, I could probably try and do the um, try to make another bridge, and
also do that over. But it wouldn’t work for 5000 or 50 because you probably couldn’t
put that many tiles. You wouldn’t have that many tiles.
Int: Is there any other way you could justify besides actually making the bridges and
testing them?
Ricardo: Well, there’s probably an equation to probably be solved but I’m not really
sure what it is right now.

Reasoning with Two Quantities versus Three:
The Importance of Emergent-Ratio Quantitative Reasoning

The bridges and tiles episode demonstrates the importance of the type of quanti-
tative reasoning in which a student engages. Ricardo reasoned with two quantities,
layers and tiles. He was able to articulate that there was a relationship between
layers and tiles, and could understand that more layers would result in more tiles.
Ricardo also made attempts to quantify this relationship, and he did eventually
make within-measure multiplicative comparisons between layers and layers, and
between tiles and tiles. In contrast, the teaching-experiment students reasoned
with three quantities: two initial quantities, such as distance and time, and a third,
emergent quantity that the students constructed as a ratio. Once the students had
constructed the ratio, they could reason directly with the third quantity, such as
speed.

Ricardo, however, did not construct a ratio to reason directly with the emergent
quantity comparing layers and tiles. The quantity that would compare the ratio of
the thickness of a bridge (as measured by the number of layers) and the weight
it can hold (as measured by the number of tiles) represents the load-carrying
capacity, or endurance, of the bridge. Reasoning directly with a third quantity such
as endurance constitutes a different aspect of quantitative reasoning, which can be
termed “emergent-ratio quantitative reasoning”. In contrast, Ricardo engaged in
“direct-measures quantitative reasoning” by focusing only on the two quantities
that could be measured directly, layers and tiles. While direct measures quantitative
reasoning may involve multiplicative comparisons, these comparisons do not lead
to the construction of a ratio as the emergent quantity.

Although Ricardo reasoned with quantities, his generalizing took on the char-
acteristics of those who reasoned with number patterns alone: he engaged in the
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generalizing actions of searching for patterns, extending by continuing patterns,
and he produced reflection generalizations that were statements of general pat-
terns and rules. What could account for this similarity? When students focused
on number patterns, they reasoned with two conceptual objects, namely two types
of numbers, such as x-values and corresponding y-values. Similarly, Ricardo rea-
soned directly with two quantities, the number of layers and the number of tiles.
Unlike those who engaged in emergent-ratio quantitative reasoning, Ricardo did
not construct a third quantity as a ratio of layers to tiles. This difference could
explain why the generalizations Ricardo produced mirrored those seen when stu-
dents reasoned with number patterns more than those produced by students who
reasoned with emergent quantities. The distinction affecting students’ general-
izing can therefore be described not in terms of quantitative reasoning versus
number-pattern reasoning, but instead in terms of whether students reasoned with
two quantities (or numbers), or whether students constructed and reasoned with a
third, emergent-ratio quantity.

In order to develop a quantitative operation, one must conceive a new quantity
in relation to one or more already-conceived quantities. Students reasoning with
speed can think about measuring “fastness” as a relationship between distance
and time. The teaching-experiment students who reasoned with the emergent-
ratio quantity of gear ratio, which they described as “the relationship,” could
think about the dependency relationship between the rotations of one gear and
the rotations of another gear. The choice of these two contexts was deliberate
because in both cases, students could experiment with how changing either of
the two currently existing quantities would affect the new quantity. For instance,
problems were specifically designed to require students to make the frog walk the
same speed as the clown, or walk twice as fast or one-fourth as fast as the clown,
or determine if the frog walked the same speed or at varying speeds given many
different centimeter-second pairs. These activities both necessitated the creation
of a ratio as a measure of the emergent quantity, and allowed the students to
experience that ratio remaining constant even as the initial quantities changed.

For example, in one episode students were asked to find different ways to make
Frog walk the same speed as Clown, when Clown walked 15 cm in 12 s (for a
detailed description, see Ellis, 2007b). One group of students guessed 10 cm in 7
s, and by watching a SimCalc movie of the characters walking; they found that
while Frog and Clown appeared to walk close to the same speed, their speeds were
not identical. They then tried 10 cm in 8 s, which did result in the same speed.
Eventually, the students worked with multiples of 5 cm in 4 s, finding that pairs
such as 30 cm in 24 s and 10 cm in 8 s achieved their goal. The students were then
able to create arguments for why 15 cm in 12 s was the same speed as 5 cm in 4 s.
In one instance, Larissa and Maria drew a proportional drawing comparing Frog
walking 5 cm in 4 s, and Clown walking 15 cm in 12 s (see Figure 14). Larissa
explained:



472 AMY B. ELLIS

FIGURE 14 Larissa and Maria’s proportional drawing comparing Clown and Frog’s journeys.

Larissa: Because for the, when they’re at 4, both of them are at 4 s. But since the
frog stops, he’s finished. So he’s finished at 4 s. But the clown keeps going and from
0 to 5 it jumped 4 s, from 4 to 10, and from 5 to 10 it also jumped 5 cm and 4 s. And
from 10 to 15, it jumped 5 cm and also 4, um, s. So the proportion stays the same
throughout the thing even though Frog stopped.

Larissa’s explanation reveals that she was able to form a composed unit of
5cm:4s, and then iterate that unit to make 15 cm in 12 s. (Her use of the word
“jump” did not refer to the frog’s motion, which was smooth, but instead referred
to the increase in the numbers between each successive box in the figure). This
composed unit represented speed for Larissa and others, and the students then acted
on that unit in ways that helped them generalize speed as a ratio of distance to time.

Ricardo’s inability to conceive of the linear relationship as an emergent-ratio
quantity of endurance was likely tied to the lack of these types of opportunities.
During the bridges activity, the participating teacher articulated a goal that students
generalize the linear relationship that the bridge could hold seven additional tiles
for each additional layer. There is little evidence, however, that what was a ratio
for the teacher, 7 tiles:1 layer, was necessarily a ratio for Ricardo. Ricardo lacked
opportunities to observe or experiment with the quantities and their relationships
in a way that either required the construction of this ratio, or supported conclusions
that the ratio must remain constant regardless of the total number of layers and
weights. Therefore Ricardo did not conceive of endurance as an emergent quantity
in constant ratio to thickness and weight, and he did not appear to have any way to
build conceptions about how endurance could be determined by relating thickness
and weight. In addition, because the bridge’s endurance was not a quantity that
the students could visually perceive (unlike speed or a gear ratio), Ricardo may
not have been able to isolate endurance as a ratio as the important quantity. In
this case, it is unlikely that he would have then been able to generalize based on a
quantity he had not isolated.

As the episode progressed, Ricardo may have shifted his focus from the quan-
tities to the numbers because he lacked the emergent ratio of endurance to reason
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with directly. Without the language or experience to identify or directly conceptu-
alize the notion of endurance, Ricardo was forced to continue reasoning with two
conceptual objects, the number of layers and the number of tiles. This condition
meant that his generalizing took on qualities similar to other students who rea-
soned with two conceptual objects rather than three, namely, the students focused
on number patterns.

The effect of reasoning with emergent-ratio quantities can shed light on why
students’ generalizations differed according to their focus on number patterns ver-
sus quantitative relationships. The prominence of relating actions in the teaching
experiment was likely tied to the students’ real-life familiarity with experiential
qualities as they reasoned with quantities in mathematical situations. Because
both emergent quantities, gear ratio and speed, are instantiations of a constant
multiplicative relationship, students were able detect similarities between the two
situations. In contrast, when students attended to number patterns, the patterns
did not reference the real-world quantities from which the problem might have
been drawn. Therefore, the students did not have a way to connect their cur-
rent number-pattern reasoning to prior experiential familiarity with qualities or
quantities.

When searching, recall that the teaching-experiment students more often
searched for relationships, while the classroom-study students more often searched
for patterns. When students directed their attention to the emergent quantities of
speed and gear ratios, these quantities could only be represented in relationship to
the existing quantities instantiated in a table. Thus it was natural to seek out those
relationships. If the numbers did not represent quantities, however, there was no
motivation to multiplicatively compare them in order to determine a relationship
between them. The students did not perceive any reason to consider a pre-existing
relationship, such as speed, to investigate. Instead, it was more natural for them to
seek out regular patterns in the table, most often by looking at successive differ-
ences. Thus students searched for, found, extended, and made general statements
about patterns rather than relationships.

The prominence of continuing phenomena connected to reasoning with quanti-
ties could also be explained by the construction of an emergent ratio. A continuing
phenomenon typically reflects an appreciation of the co-varying nature of quan-
tities, which may be clarified for students once they have constructed ratios and
observed those ratios remaining constant. In absence of these experiences, the
classroom-study students relayed statements of global rules that they developed
from their pattern-seeking activities.

Concluding Remarks and Implications for Instruction

A focus on emergent-ratio quantities was connected with different types of gen-
eralizations than those tied to number-pattern reasoning, or reasoning related to
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only two quantities rather than three. When students focused on emergent-ratio
quantities, their generalizing actions included relating and searching for the same
relationship, rather than searching for patterns and procedures. The reflection gen-
eralizations students produced were statements of continuing phenomena rather
than statements of global rules. Moreover, the generalizations connected to reason-
ing with emergent-ratio quantities proved more productive for students in terms of
developing correct extensions, creating correct global conclusions about the nature
of linearity, and producing appropriate justifications. These results provide further
evidence to hypothesized claims that if mental actions are tied to experience, any
meaningful learning must be originally grounded in quantitative referents (Hirsch,
1997; Kaput, 1999; Steffe & Izsák, 2002; Thompson, 1994b, April).

More importantly, the study’s results emphasize the need to move beyond a sim-
ple quantitative reasoning/number-pattern reasoning distinction when considering
how students develop ideas in algebra. Previous work has identified both instances
in which focusing on quantitative relationships encouraged the development of
meaningful concepts and generalizations (e.g., Curcio et al., 1997; Ellis, 2007b;
Hall & Rubin, 1998; Lobato & Siebert, 2002), and instances in which placing
students in quantitatively-rich situations did not guarantee that they would create
algebraically-useful generalizations (Nobel et al., 2001; van Reeuwijk & Wijers,
1997). This study suggests the need to more carefully consider the type of quanti-
tative reasoning in which students engage. Although reasoning with quantitative
relationships can support more sophisticated mathematical activity, students who
fail to create new mathematical objects, such as emergent ratios, may not gain any
additional benefit from focusing on real-world quantities. This result suggests the
need for future work identifying relationships between the ways in which students
reason with quantities and the concepts and generalizations they develop.

These results also suggest some implications for instruction. First, they high-
light the importance of the type of situation used to explore ideas of linear growth
as well as the ways in which data are presented. Specifically, teachers should
consider the value in developing linearity as an experiential, emergent quantity.
Approaches that address linearity through number patterns embody the expec-
tation that students will form a numeric ratio and notice the constant nature of
the ratio. However, in pattern situations in which the two sets of numbers do not
represent quantities, students cannot easily conceive of the numeric ratio as its
own phenomenon. They will have nothing to compare it to, and may lack oppor-
tunities build on their experiences in order to construct meaning for constant ratio.
In absence of this meaning, students risk generalizing based on unproductive,
coincidental patterns that are artifacts of particular organizations of data, as has
been reported in the literature.

Students should therefore be confronted with problem situations that require
them to explore the phenomenon in question; they should have opportunities to
engage in activities such as (a) exploring how changing one or both initial quantities
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will affect the emergent quantity, (b) determining how to adjust the initial quantities
while keeping the emergent quantity constant, and (c) determining how to double,
halve, or otherwise manipulate the emergent quantity in relationship to the initial
quantities. Of course, helping students focus on quantitative relationships of these
kinds is not easy or automatic; these types of activities require a classroom shift
that may take significant time and effort, given the current school mathematics
emphasis on numbers and patterns.

Given the importance of experiential, emergent quantities for the initial con-
struction of ratio, curriculum designers and instructors should focus on situations
that support these conceptions and avoid ones that do not. Some problem situ-
ations pose contrived contexts in which data are not naturally linear, presenting
relationships such as how many surfboards are sold for a given temperature at
the beach. The contrived nature of these situations could conflict with students’
natural sense making about what should constitute linearity. In addition, students
who work with contrived data will lack the opportunity to directly explore the
nature of the relationship, making sense of why constant ratio is an appropriate
mathematical model for the phenomenon in question. Similarly, tasks presenting
approximately linear data, either due to measurement error or the inexact nature
of the phenomenon, may prevent students from isolating the importance of ra-
tio relationships. While inexact or approximately linear data are fully appropriate
data to investigate, particularly in terms of highlighting the power of mathematical
models for making sense of messy data, these contexts should occur after students
have already formed an understanding of linearity as a constant rate of change.

Teachers who understand the importance of experience and quantitative rea-
soning can help their students focus attention on quantities and the language of
quantitative relationships. Although students might be likely to attend to number
patterns alone once they are extracted from the situation and represented in tables
or other forms, teachers can intervene to draw students’ attention back towards the
quantitative referents of numbers and patterns. In addition, teachers can incorpo-
rate the language of quantities into the classroom discussion; for example, when
students are likely to describe patterns in a table such as “each time it goes by 5,
it goes up by 2,” a teacher could ask students to describe whether the clown walks
the same distance for a given amount of time throughout the table.

One important feature of this study’s results is that neither group of students
focused exclusively on quantities and quantitative relationships, even when they
worked within quantitatively rich contexts. This serves as an important reminder
for those concerned with instructional implications: real-world situations will
not serve as a panacea. Students may focus on any number of features in a
problem situation, and this focus may not always include relationships between
quantities. The problem situations presented to students are less important than
students’ interpretations of these situations. Therefore teachers play an important
role in shaping a classroom discussion, posing appropriate questions, inserting new
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information, and otherwise guiding students to think carefully about quantitative
relationships. If students are continually encouraged to develop emergent quanti-
ties, they will be poised to produce generalizations that are correct, powerful, and
well connected to other knowledge.
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