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The Teacher’s Role in Supporting Students’
Cornnections Between Realistic Situations and
Conventional Symbol Systems

Joanne Lobato and Amy Burns Ellis
San Diego State University

We use the notion of focusing phenomena to help explain how a teacher’s actions
were connected to her students’ interpretations of a linear equation. This study
was conducted in a high-school classroom that regularly emphasised dependency
relationships in real-world situations. Seven interviews revealed a majority view of
¥ = b + mx as a storage confainer—a place to insert b and m values—rather than as a
relationship between x- and y-values, Classroom analysis revealed how the teacher
directed attention away from functional relationships with increasing frequency as
she moved from realistic situations to conventional representations.

Current reform efforts in algebra instruction in several countries emphasise
mathematical modelling, the use of realistic problem situations, and a
pedagogical approach toward functions based on the notions of change and
dependency (Fey, 1990; Kaput & Nemirovsky, 1995; Kieran, 1993). According to
the Australian Education Council (1990), the study of functions should begin with
modelling activities that draw upon students’ daily experiences with variation.
Similarly, algebra standards in the USA call for middle- and high-school
students to identify functions modeling quantitative relationships and to analyse
rates of changes in various contexts (National Council of Teachers of
Mathematics, 1989, 2000). '

One rationale for the use of real-world situations in algebra is their
potential to lend meaning to the conventional symbol systems of tables, equations,
and graphs by connecting them with students’ informal understanding of
dependency relationships (Mathematical Sciences Education Board, 1998;
National Research Council, 1990). Our challenge is to support the transition to
using conventional symbols in a manner that allows the symbols to carry the
meaning of acting on experientially real quantities (Gravemeijer, Cobb, Bowers,
& Whitenack, 2000). An emerging literature documents students’ learning
trajectories as they explore the conventional symbol systems for functions linked
with experientially real settings (Bowers & Nickerson, 2000; Kaput, 1994;
Nemirovsky, Tierney, & Wright, 1998). While these studies focus on students’
conceptions and difficulties, further research is needed to understand the role of
teachers in supporting the movement between exploring dependency
relationships in realistic situations and using conventional symbol systems to
represent those situations.

The purpose of this study is to examine how the teacher’s instructional

actions are connected to students’ interpretations of the meaning of a linear
equation. The study was conducted in a secondary classroom in the USA using the
Contemporary Mathematics in Context materials produced by the. Core-Plus
Mathematics Project, or CPMP (Coxford et al., 1998). We chose CPMP for two
reasons. First, the materials regularly explore functions as a way to describe
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dependency relationships in complex real-world situations. Second, they
emphasise connections among the conventional symbol systems of tables,
equations, and graphs. We investigated linear functions because it is a
.conceptually complex topic for students, rich in terms of real-world connections,
and featured as an important topic in CPMP and in the reform standards set forth
by the National Council of Teachers of Mathematics (1989, 2000).

Conceptual Framework

Researchers operating from the Realistic Mathetmatics Education approach
(developed at the Freudenthal Institute) use the notion of progressive
formalisation to model how students move from informal reasoning in realistic
situations to the use of formal conventional symbol systems {Gravemeijer et al.,
2000; Streefland, 1995; van Reeuwijk & Wijers, 1997). Van Reeuwijk (2002)
summarises the general approach as it applies to algebraic reasoning: (a) observe
patterns or regularities among quantities in experientially real situations; (b)
describe chains of calculations using nonconventional symbols such as arrows,
arithmetic operations, and arithmetic trees; (c) generalise nonconventional
symbols to informal word formulas; (d) create formulas and use different
representations (tables, direct and recursive formulas) to describe more complex
situations; (e) create, interpret, and test algebraic formulas and conventional
rules; and (f) derive formulas from other representations, such as tables. Other
researchers describe a similar process even when students work with a rwmber
pattern or an arithmetic object not necessarily linked to realistic contexts:
identify a pattern; test to see if the pattern generalises; express generalisable
patterns using informal verbal and written statements; and develop algebraic
notation as a concise way to describe generalised patterns (Pegg & Redden, 1990;
Reid, 2002). ' .

Although exemplars of this type of progression exist empirically (see, e.g.,
van Reéuwijk & Wijers, 1997), recent research indicates that the process can be
far from straightforward. For example, Lee (1996) found that while students
readily notice patterns, they often find patterns that do not extend widely to

different cases and are not “algebraically useful” (p. 95). Another common finding

is that students tend to focus on iterative or recursive patterns of differences
between successive terms in data rather than on functional patterns (Stacey, 1989;
Stacey & MacGregor, 1997; Szombathelyi & Szarvas, 1998). Similarly, students
often treat the growth pattermns in each column of a table as separate and

uncoordinated (Mason, 1996; Schliemann, Carraher, & Brizuela, 2001). Even .

when students do attend to useful patterns, the perception of a valid number
pattern does not guarantee the ability to correctly generalise and formalise that
. pattern (English & Warren, 1995; Orton & Orton, 1994).

Competencies as well as difficulties have been identified for students who
move from informal settings to conventional representations, however, less is
known about the teacher’s role in facilitating this development. In this paper,
we extend the notion of focusing phenomena, as advanced by Lobato, Ellis, and
Mufioz (in press), to help explain how the teacher’s instructional actions are
connected to her students’ interpretations of the meaning of a linear equation.
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Focusing phenomena are observable features of the .classroom environment
that regularly direct attention to certain mathematical properties or patterns.
Focusing phenomena emerge not only through the instructor’s behavior but also
through co-constructed mathematical language, features of the -curricular
materials, and the use of artifacts such as graphing calculators. The construct of
focusing phenomena is rooted in a situated view of the abstracting process.
Abstracting involves the identification of regularities in one’s activities, the
isolation of certain properties, and the suppression of other details (Frorer,
Hazzan, & Manes, 1997). Hershkowitz, Schwarz, and Dreyfus (2001) situate the
abstraction process by arguing that abstracting is influenced by the tasks m
which students work, the artifacts and tools available, the personal histories of

- students and teachers, and the particular social and physical setting. Thus, the

notion of focusing phenomena accounts for multiple agents that combine to direct
students’ attention to particular aspects of mathematical activity. We examine
how a teacher directs her students’ attention toward or away from relationships
between independent and dependent variables depending on whether .they
discuss a realistic situation or a conventional representation of the situation. By
developing a greater understanding of the teacher’s role in helping students
connect realistic situations with conventional symbols, we hope to gain insight
into how to design productive instructional interventions.

Research Methods

Participants and Data Collection

This study emerged out of a continuing 5-year research project, the
Generalisation of Learning Mathematics Project. Data collection occurred in a
large urban high school in the southwestern USA. Seventy-five percent of the
school’s 2,400 students are. Hispanic, and the remaining students are Filipino
(13.5%), Caucasian (5%), African’ American (3.5%), .Asian or Pacific Islander
(2.5%), and Native American (0.5%).. A quarter of the student population is
classified as limited English-proficient, and the students perform below the
nation’s average on standardised achievement tests for mathematics and
reading, The school was selected because it was one of only two schools in the
metropolitan area using the CPMP materials, and because no other local high
schools used materials that emphasised the grounding of algebraic reigoning in
realistic situations as regularly as CPMP. '

The collaborating teacher, called Ms R for the purposes of this study, had
taught for 6 years at the time of the study. She was recruited in part because she
fitted the criteria set by Huntley, Rasmussen, Villarubi, Sangton, and Fey (2000)
for appropriate implementation of CPMP; that is, she followed the intended
curriculum, used graphing calculators in the classroom, and encouraged
cooperative learning strategies in heterogeneous groups. Ms R was enthusiastic
about using real-world situations because she wanted her students to make
connections between mathiematics and their daily lives. Data collection occurred
in the Course 1 class (n = 36) that Ms R deemed the most productive in terms of
classroom management and students’ readiness to learn.
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Both interview data and videotaped classroom data were collected. Seven
students participated in one semi-structured interview (Bemard, 1988). The
interview occurred approximately four weeks into the instructional unit, after
the relevant topic of linear equations in the y = b + mx form had been developed.
The interview lasted about 45 minutes and was videotaped. The interview
sample was theoretically relevant rather than random. A significant number of
the class members appeared to be unprepared for the CPMP program due to their
limited background knowledge. Since the intent of the study was to examine
students’ interpretations of linear equations that developed out of investigations
with real-world situations, it was important to select students who appeared to
be capable of making sense of the CPMP materials. Specifically, interview
participants were chosen based on Ms R’s identification of students who earned
high mathematics grades (in the A-C range), were willing to participate in
classroom discussions, completed their homework assignments, and generally
appeared to be well prepared for the CPMP curriculum. The sample included
three of the four top-performing students in the class. Gender-preserving
pseudonyms have been used for all participants.

Videotaped classroom data were collected for 5 weeks. One camera focused o
the teacher during whole-class discussions and another focused on a target group
of four students during periods of group work. The class met three times a week,
once for 60 minutes and twice for 90 minutes. Two or three researchers observed
each class session. One operated the video camera, and the other researcher(s)
took detailed field notes (Schatzman & Strauss, 1973). Great effort was made to
establish rapport with all students and particularly with the interview
participants. Classroom observations occurred for two weeks prior to collecting
videotaped data, so the participants were familiar with the researchers by the
time . the interviews occurred. As evidence of this familiarity, all of the
participants freely responded to some interview questions by stating that they
did not know the answer. Thus the researchers attributed a reasonable degree of
validity to the responses that the students did provide. Every effort was made to
minimise responses based on social pressure.

Overview of the CPMP Instructional Unit

The classroom observations occurred during 5 weeks of instruction an linear
models. Throughout this paper, we use “instructional unit” to refer to the portion
that we observed, even though it was about two-thirds of the textbook chapter.
The remainder of the chapter addressed systems of linear equations. The
instructional unit was organised around understanding linear equations in the

. slope-intercept form and making connections among tables, equations, and graphs.

The unit consisted of several multi-day lessons in which ideas about linearity
were developed through investigating real-world situations. Figure 1 provides

an overview of the mathematical ideas and the realistic situations as they were °

explored in the classroom.
The CPMP approach relies upan modelling and linked representations to

develop algebraic ideas. For example, the unit began with a 3-day activity in.

which students explored a linear relationship between the distance of an
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overhead projector from a wall and the enlargement factor between lines and
their projected images. :

Situations Topics Day | Mathematical Ideas
Overhead 1 Collect data and make
Projectors predictions
Week 1 , 2 Write equation and graph for
data
TV Ratings | Exploration ['3 Explore relationships between
of Linear two quantities
Data
C 4 Predict using tables and scatter
Week 2 }j Concert plots
‘|l Attendance 5 Find a linear model for a
scatterplot
6 Use the calculator to locate a
line of best fit
- Rubber Exploration | 7 Ay
Week 3 || Bands and of Rate of Introduce rate of change as Ar
Springs Change
8 Calculate and explore rate of
change
Cost For Slope, y- 9 Define slope as a constant rate of
Soda intercept change ‘
Week 4 || Machines and 10 | Write equations in y = b + mx
: y=b+mx form.
Formally
Defined
Tndividual Tnterviews Conducted After Day 10 and Before Day 14 |
———————— 1 R F ¥ Compare y = b + mx and recursive
Equations in forms of equations (y = now +
Graphical next)
Settings 12 | Graphy=b + mx equations
Week 5 ‘ Connections | 13 Explore the effect of changing b
Amaong and m on graphs of equations
Speed with Eable'_‘;’ 14 | Connect speed phenomena with
Motion q:a(t;mnshs equations and graphs
Detectors and Lrap

Figure 1. Overview of the development of linear equations in the CPMP Unit.
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By collecting and representing data with tables, students were able to
experience an approximately linear relationship between the distance of the
projector from the wall and the enlargement factor. Students used graphing
calculators to investigate whether or not a given equation represented 2 good
linear model for a particular scatterplot, thus gaining informal experiences
linking linear equations with graphs. Students also informally explored the
meaning of the y-intercept and the rate of change of a variety of linear functions
in real-world situations before the terms y-intercept and slope were introduced.

Lessons were' designed to promote cooperative learning, and small-group
activities occurred during 12 of the 15 class sessions. The textbook included many
exploratory and discovery-oriented problems. The teacher used a variety of
instructional formats, including whole class discussion, whole class data
collection, small group activities, and some direct instruction. She faithfully

followed the CPMP curriculum, except for supplementing with additional .

practice and with a lesson on motion detectors.

Interview Instrument

The interview involved a series of questions about linear function concepts
related to a single context (see Figure 2). The boogie board data appeared in a
CPMP practice problem (which students saw an Day 5 in class); however, the
data were presented in the interview in graphical rather than tabular form. The
questions were developed to identify the sense students made of linear data and
equations from a familiar data set. They were not designed to evaluate the CPMP
curriculum and therefore did not span the range of tasks found in the CPMP text.
The boogie board graph was constructed so that the point of intersection of the
coordinate axes was (76, 0) rather than (0, 0). As a result, it was possible to
identify whether students understood the meaning of y-intercept as the point
where the line crossed the y-axis (regardless of the value of x) or as the value of
the function when x = 0. The students had seen two similar examples in class prior
to the interview, and thus the non-standard graph was considered appropriate
for the task. The results of students’ responses to the following two questions,
which were designed to investigate their understanding of a linear equation, are

- presented in this paper.

1. [After being asked to draw an approximate line of best fit for the data]: Can
you write an equation or formula for the line you drew? What does: this
equation tell you about the situation? [After the student identified an m or b
value]: What does that number mean? What does the x in your equation
mean? L

2. Someone'else I interviewed drew a line just like yours and came up with an
equation of ¥ =-112 + 1.6x. Do you think this equation is correct or incorrect?
"Why? What does each number in the equation mean? What does the x mean?

The Teacher’s Role in Supporting Students’ Connections . 105

The Oh-So-Cool Surf Company rents boogie boards at Long
Beach. Naturally, their business is affected by the weather. The
graph below shows boogie board rental data from nine weekend
days during July and August 1999. '
Daily Boogie Board Rentals
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Figure 2. Situation presented in Interview 1.
{with one student’s line of best fit indicated by the dotted line)

Results of the Interviews.

In this section we provide evidence that the students appeared to interpret a
linear equation of the form y = b + mx as a storage container—a place to insert b
and m values—rather than as a relationship between corresponding x- and y-
values. First, we present students’ interpretations of the meaning of linear
equations, which emerged from the task of writing an equation for a line. Second,




sl

106 Lobato & Ellis

we present the students’ interpretations for the meaning of x in the equation.
These interpretations are closely linked to the students’ understanding of the
equation as a whole. Finally, we show how the notion of a linear equation as a
storage container emerged from the analysis of the data.

Students” Interpretations of Linear Equations

Six of the 7 interview participants were able to write an equation for the
given line (Figure 2). Each of these students wrote an equation in the form
y =02 0x and referred to the value in the first box as the “starting point” or
“starting value” and the value of the second box as what “it goes up by”. Thus,
the students appeared to have generalised a linear equation as "y equals the
‘starting point’ plus ‘what it goes up by” x.” Enrique’s work is typical:

Enrique: This is y, and then she put like a little x or whatever [writes

y=0x0x]
Interviewer: Okay. ‘
Enrique: f,‘;\nfl g{l}u? or minus and this [points to second box] and that {points to
rst box]. :
Interviewer: Ska 2 And what part do you remember about that [points to the first
ox]? : ‘

Enrique: This is like the starting value [points to the first box].
Interviewer: Okay.

Enrique: And this is like a slope or something like that {points to the second

box]. .
Interviewer: A slope or something like that? What’s a slope?
Enrique: The rate of change.

Interviewer: Okay.

Enrique: So that's what it’s going up by.

Interviewer: Okay.

Students constructed various meanings for “starting point” and “goes up by”.
For example, Enrique wrote the equation y = 76 + 2x. He apparently interpreted
the “starting point” as the initial value shown on the x-axis or “where the
values on the x-axis start”. The value 2 represented the scale of the x-axis or
“what the x’s go up by”. In contrast, Carissa wrote the equation y = 8 + 2.5x. She
interpreted the “starting point” as the point where the line starts, which is the
location where the line intersects the y-axis regardless of the value of x. Carissa
computed the 2.5 using the slope formula and referred to it as what the line “goes
up by”. The other meanings that students held for the two parameters are
reported elsewhere (Lobato, Ellis, & Mufioz, in press). For the purposes of this
paper, we will focus on the students’ understanding of the equation as a whole,
rather than on the students’ meanings for each parameter.

The students either wrote the y=[J:[x template and then filled in
values for the two boxes, or they wrote the equation from left to right, filling in
values in the boxes as they proceeded. For example, Enrique wrotey =[+[x
and then placed 76 and 2 in the boxes. Another student, Carissa, proceeded from
left to right. She wrote “y = 8” and explained that 8 was the starting point of the
line. Then she wrote “+” and said that addition means the line will go up to the
right. Finally, she calculated 2.5 using the slope formula and explained that 2.5
is “how much it's [meaning the line] going up by each time”. She completed
writing the equation as y = 8 + 2.5x. Carissa was then asked what the equation
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tells her about the situation—a question that could elicit an understanding of the
dependency relationship between the temperature and the number of boogie
boards rented. Instead, she focused on values of the two boxes in y = [J+Dx:
“That [pointing to the § in her equation y = 8 + 2.5x] um, is where they start off on,
and they’'re adding 2.5 boogie boards.” These examples illustrate how students
treated the equation as a template for which one fills in missing “starting point”
and “goes up by” values.

Meanings for x

Students were asked about the meaning of x for their produced equations and
for the given equation y = -112 + 1.6x. This revealed information about the
meaning that students generated for a linear equation as an entity. Our goal was
to infer categories of meaning for the x value in the students’ linear equations.
Analysis of the transcriptions of the interview data followed the interpretive

‘techniques in which the categories of meaning were induced from the data

(Glaser & Strauss, 1967; Miles & Huberman, 1994; Strauss & Corbin, 1990). We
present three categories of meaning for x.

x is a label. The most common meaning for x was demonstrated by 4 students,
who interpreted x as a label meaning “goes by” or “every time”. For example,
when asked what x meant in y = -112 + 1.6x, Enrique responded that the x meant
“every time” as indicated in the transcript below.

Interviewer: Okay. What does the x stand for?

Enrique: Like what is every time it goes up. Like 1.6x. Like every time.
Interviewer: 5o x means every time?
Enrique: Yeah. -

Enrique pointed to the values along the x-axis, noting that “it’s going up,
yeah, because 88, 90 is about 1.6”. Similarly, Linnea explained that the x in her
equation y = 5 + 2x meant “what the x-axis is going by”. In Linnea’s words, the 2x
meant “the x-axis goes by 2s”. Priyani reported that x meant “what it's going by”.
Raul stated that the x meant “every time” and the 2x in his equation meant “it
goes up by 2 every time”. In each case, x represented a label that was connected to
the slope value.

x is part of a memorised equation. Two students reported that they did not
know what the x meant iny = [1+[1x, but they knew that the x had to be there.
Priyani was particularly articulate about this position: “In Ms. R’s class, I just
put x because it’s y equal and it’s [a] variable [equation], and you are supposed to
put x, and I just put it, but I never know what it’s for.” Similarly, Carissa
explained that “there’s always an x” in a variable equation, but “I'm not sure
why”.

yx represents a set of temperature values. Only the top-performing student in
the class, Andy, provided evidence of an understanding that x represents a
variety of temperature values that can be substituted into the equation in order to
determine the corresponding number of boogie boards. Andy determined that y = -
112 + 1.6x was'a reasonable equation by choosing a temperature (78), substituting
78 for %, calculating the corresponding value of y as 12.8, and checking the point
(78, 12.8) against his graph, which was close to the actual point of (78, 14). When
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asked what the x means, he replied, “This is like you could fit any number; like
86, you could put in here it's just that you're like times-ing.”

In striking contrast, none of the other participants appeared to understand
when substitution was appropriate. For example, Carissa reported that she could
substitute 31 boogie boards for x rather than y in y = -112 + 1.6x. Ruben mentioned
that he should substitute a difference of two temperature values for x rather than
a single temperature value. Priyani was unsure how to use her equation
¥ =10 + 1x to determine the number of boogie boards rented when it was 80°. She
wrote y = 10 + 80x but did not know how to proceed. The interviewer asked
Priyani what the x and y represented en the graph, and she correctly responded
that “x is the temperature and y is the number of boogie boards rented”. Yet she
was unable to use this information to solve the 80° prediction problem, because
she did not know what to do with the 80 in her equation. Enrique was specifically

asked if he could put numbers in for the x in y =-112 + 1.6x, and he said he did not
know. '

A Linear Equation as a Storage Container

The following factors suggest that the students, with the possible exception
of Andy, viewed y=[]x[lx as a storage container: (a) the prevalence of
treating x as a label; (b) the lack of understanding that numerica! values can be
substituted for x to obtain corresponding y-values; and (c) the frequent
verbalisation that an equation is “y equals the ‘starting value’ plus or minus
‘what it goes up by’ x”. They appeared to treat the linear function as a container
‘in which “starting point” and “goes up by” values were stored rather than as a
relationship between corresponding x- and y-values. Furthermore, the data
suggest that two students viewed the equation as two separate “equations” or
statements rather than as a single entity. Specifically, these students appear to
have read the equation y = b + mx as “y ‘is’ or ‘goes up by’ b and x ‘goes up by’ m”

@ 3@
00

Figure 3. How some students appeared to parse a linear equation.

" General case

Linnea's equation

Priyani's equation
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For example, Linnea explained how she created her equation: “This is the y-
axis and this is the x-axis, and so I did a y equation, and so it’s going up by 5, the
y, and the x is going up by 2.” This suggests that Linnea read y = 5 + 2x as follows:
"y = 5", which she interpreted as “the ys (on the y-axis) go up by 5”; “+”, which
meant “and”; and “2x”, which meant “the xs (on the x-axis) go up by 2. Priyani
spoke about her equation y = 10 + 1x in a similar manner. She chose 10 as the
“starting value” because her line of best fit for the data in Figure 2 intersected
the y-axis at 10. She calculated the 1 in her equation as the change in y-values
for two selected points, and she referred to the 1 as what the line goes up by.
When the interviewer asked Priyani about the meaning of x and y in her equation

of y =10 + 1x, she explained that “y is the starting value” and “x is what it’s
going by”.

Results of the Classroom Analysis
The Nature of the Teacher’s Questions

We were surprised by the results of the interviews because the participants
were the higher-performing and more diligent students in the classroom, and
they had regularly explored linear relationships across a variety of real-world
dependency situations. Consequently, we turned to an examination of the nature of
the questions and commands that the teacher made during direct instruction and
whole-class discussions. Our objective was to determine whether the teacher
directed students to focus on the relationship between corresponding x- and y-
values, or whether she primarily directed students to focus on calculating values
for the y-intercept and slope and inserting them into the y = [+ [Jx equation.
That is, we sought to identify any focusing phenomena involving the teachers’
questioning patterns that might be related to whether or not the students
attended to a functional relationship between corresponding x-and y-values.

The classroom analysis draws on the interpretive and iterative techniques
used in the development of grounded theory (Glaser & Strauss, 1967; Strauss &
Corbin, 1990). The two categories that emerged during our first round of analysis
were relational utterances and calculational utterances. After further examining
the videotaped data, it became apparent that the types of questions the teacher
posed differed depending upon whether the classroom discussion centred an an
informal discussion of real-world data, or whether the discussion included the
use of the conventional representations of equations, tables, and graphs_. Thus a
second set of categories emerged, namely situational versus representational. By
considering all combinations across both categories, four codes emergedf (a)
situational relationship, (b) situational calculation, (c) representational
relationship, and (d) representational calculation.

During the second round of analysis, we were unable to code a small
percentage of the teacher’s utterances using the four codes. As a result, a fifth
code emerged—representational object—to account for the uncoded utterances.
This code refers fo a question or command uttered in a representational situation
that treats a graph of a linear equation as an object or entity rather than as a
representation of a relationship between x- and y-values. For example,  the
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trdehor might tell students that a line rising to the right has a positive slope. In
this case, she is treating the sign of the slope as a characteristic of the line as an
object and is not relating the sign to a relationship between x- and y-values, nor is
she caleulating a slope value. This fifth code allowed us to preserve the integrity
of the data by accounting for all of the teacher’s questions and commands.
lowever, this code is not central to the main findings of this paper. The primary
result of this analysis reveals a shift in calculational versus relational questions
depending upon whether the context is situational or representational. Table 1
provides a description and example of each of the five codes.

Every instructional lesson involved both realistic situations and conventional
representations. Thus situational and representational refer to what the teacher
talked about rather than to the nature of the general activity in the classroom.
That is, representational does not mean context-free, since realistic situations
were discussed during every lesson; representational means that the teacher
referred to conventional representations in the realistic situation. Suppose the
teacher pointed to an equation or a graph representing data about the
enlargement factor of an overhead projector and asked, “What do you notice is
happening to the enlargement factor every time you increase x by 2 metres?” We
would code the utterance as a representational relationship rather than
situational relationship because she specifically directed students’ attention to a
conventional representation. Situational codes were used when the teacher
referred only to the relationships or quantities in a situation, and a conventional
representation had not yet been generated.

The codes refer to the teacher’s questions in the form of inquiries or commands
uttered during whole-class discussion or during direct instruction. We did not code
the teacher’s utterances as she walked around the room and informally talked to
various small groups or individual students. The codes include every question the
instructor uttered, including repeated questions. When the nature of the question
was unclear, codes were assigned based upon the type of answer that the
instructor accepted as appropriate. The totals for each type of coded utterance
are shown in Table 2. ‘ : :

Of the 984 questions coded, only 156 (or about 16%) were relational in nature.
A different picture emerges, however, if one examines the questions the instructor
asked within situational contexts versus those asked within representational
contexts. Seventy-nine of the 138 situational questions (57%) emphasised the
relationship between x and y. In contrast, only 77 of the 846 questions (9%) in the

representational context emphasised the relationship between x and y. The

remaining 91% of the instructor’s questions focused on finding slope and intercept
values for y = [0 + Ox or treated the line as an object. The first 10 days of
instruction were coded rather than the entire instructional unit, since the
interviews began after Day 10. We did not have videotaped data for Day 9 due
to technical difficulties. However, analysis of two sets of detailed field notes
indicates a similar pattern for Day 9 as for Day 10, with approximately 90% of

the content for Day 9 coded as representational calculation (RC) and 10% as

representational object (RO).
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Codes for the Types of Questions or Commands Uttered by the Teacher about
Linear Relationships During Formal Instruction

Code

Meaning

Example

SR

s5C .

RR

RC

RO

Situational Relationship. A
question or command uttered
during a discussion of a
real-world situation that
highlights the relationship
between quantities in the
situation.

Situational Calculation. A
question or command uttered
during a discussion of a real-
world situation that leads the
student through a calculation
that is not connected to the
relationship between quantities.

Representational Relationship.
A question or command uttered
during a discussion of a symbolic
representation that focuses on the
relationship between x- and y-
values.

Representational Calculation. A
question or command uttered
during a discussion of a symbolic

representation that focuses on the

procedures for either determining
values for the missing values in

y =+ 0x or on whether to use
+ or —, but does not focus on the
relationship between x and y.

Representational Object. A
question or command that focuses
attention on the graph of a linear
equation as an object rather than
‘as a representation of a
relationship between x and .

Day 1, 24:27: “How many times
bigger do you think the projector is
making the image?” [Note: Teacher
directs students’ attention to the
relationship between the length of
an image and its projected image.]

Day 1, 1:39:00: “If we don’t want to
do this by guessing and checking
with multiplication, what’s
another way we can use the
calculator to get this more quickly?
What would you divide?”

Day 5, 1:40:00: “What happens to y
as x grows larger (referring to a
linear equation)? Is it getting bigger
or smaller?”

Day 8, 1:15:00: “What number do I
put into the first box (referring to
y = 0% x on the overhead)?
What is the starting value?”

Day 2, 1:06:00: “How do we decide
where we draw that linear model
(referring to a given scatterplot)?
We have to place it so that half of
the points are above and half are
below the line.”
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Table 2

Number of Each Type of Coded Utterance Made During the ‘First Nine Days of
the Instructional Unit

Situational Context Representational Context

SR SC Totalg ‘RR RC RO Total; Total
Day 1 16 35 51 0 0 8 8 59
Day 2 24 14 38 19 5 9 83 121
Day 3 101 2. 18 40 40 98 100
Day 4 0 9 9 0 51 56 107 116
Day 5 3 0 3 S V) 2 78 81
Day 6 0 0 0 2 27 14 43 43
Day 7 28 0 28 6 144 4 154 182
Day 8 4 0 4 17. 192 18 227 231
Day 10 30 3 1 43 4 48 51
Total 79 59 138 77 6l4 155 846 984
% of 984 8 6 14 8 6 16 8
% of Total, 57 43 9 73 18 |
or Totaly

Note. SR = situational relationship; SC = situational calculation; RR = representational relationship;
RC = representational calculation; RO = representational object; Total; = Total for sititational context;
Totalg = Total for representational context ! )

When the instructor engaged in discussions about the real-world phenomena
to be modelled, a majority of her questions were relational ‘in nature. She
emphasised the relationship between the dependent and independent variables
as students explored linearly-changing quantities. However, as .soon as
conventional representations of the phenomena were generated, a shift in focus
occurred. The number of questions emphasising a relationship between x and y
decreased dramatically, and the instructor instead highlighted methods for
calculating the values to place in the boxes in the equation y=[D+0x.

Consequently, it is not difficult to see why students interpreted y =[J+[Jx asa
storage container, since the wvast amount of attention directed to this
representational form was calculational in nature. In fact, much of the whole
class instruction regarding equations was organised around the calculation of
values to place in the boxes in y = [0 £ x.

We present two illustrative classroom examples from the first activity in the
unit. The first example demonstrates a typical discussion in which the teacher
focused on the relationship between independent and dependent variables in the
overhead projector situation. The second example shows how the discussion
shifted to a calculational focus once the representation of an equation was
introduced. The description of this introduction of linear equations will illustrate
how the instruction supported the development of the conception of a linear
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equation as “y = ‘starting point’ plus ‘what is goes up by’ x”. Further, this
conception of an equation discouraged a focus on any dependency relationship
between x and y, and instead supported a view of the equation as a storage
container. ‘

Example of a Relational Discussion

When the instructor engaged in discussions about the phenomena to be.
modelled prior to the introduction of conventional representations, the majority
of her questions emphasised the relationship between the dependent and
independent variables.. For example, the CPMP unit opened with a 3-day
activity in which students explored a linear relationship between the distance of
an gverhead projector from the wall and the resulting enlargement factor between
the length of an object and its projected image. The teacher and the students
initially explored the phenomenon of an enlargement factor and discussed the
dependency relationship between the length of an object and its projected image:

MsR: So whalt's going to happen to the size of this shape if I put it on this
Frojector? ‘

Students: ‘s going to get bigger. ‘ ‘ o

MsR: It's going to get biFger? So, this is the measurement ] have on the paper.
[She shows the class with her fingers how big her drawing is.f, his
little tiny thing, Right? If I go up here, look how much bigger it is. How
many times bigger do you ﬁ\mﬁ this projector is making that image?

Mare: - Two. ) :

Ms R: Two times bigger?

Mare. Three. : B

MsR: Three times bigger maybe? So that's what we're going to find out. How

many times bigger is this projector enlarging it.-

Thus the teacher directed students’ attention to the multiplicative
relationship between the size of an object-and its projected image. She posed a
thought experiment for the students to consider, in which the length of an object
was 2 an and its projected image was 16 an. Several students said that the
enlargement factor would be 8 in that case. The teacher emphasised the
multiplicative relationship by focusing on the fact that an enlargement factor of
8 meant the image was 8 times larger than the original object. She continued to
encourage students to consider dependency relationships as they switched to
consider a new situation involving the relationship between the distance from.
the projector to the wall and the corresponding enlargement factor: ‘

MsR: Now do think that will happeﬂ if 1 move the projector closer? Will the

. ehlarﬁement factor change if I put it closer and I focus it?

Student: It will change.

Ms R: Which way do you think it will go?
Student: Down. .
Ms R: Down? So the enlargement factor will be smaller or bigger? Smaller.

Okay. That’'s what we're going to look at right now. Qur first
experiment in this investigation i we're ﬁ?ing to try to figure out the
enrargement factor of this projector. But the enlargement factor of the
projector depends on something. What does it depend on? How far
away it is? What size You’re starting with? So those are all the
questions we're going to look at.

The teacher focused the students’ attention towards dependency
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relationships by asking students questions about the relationship between
independent and dependent variables. However, once the students created a table
and had to write an equation, a shift in focus occurred. The class collected data in
the following manner. The teacher placed the projector 2 m from the board. Then
she called on students to collect data for the lengths of the projected image for
each of four sketch lengths: 10 am, 27 am, 5 an and 15 am. They compited an
average enlargement factor from these four data points. The students entered the
enlargement factor of 4.8 in a table. The teacher then moved the projector back 1
m until it was 3 m from the board, and the data collection process was repeated.
Once the first three rows of data were collected and compiled in thetable shown

in Table 3, the nature of the teacher’s questions shifted in focus, as will be
demonstrated in the next section.

Table 3

Data collected by students showing the enlargement factor of an overhead
projector placed varying distances from the board

Distance Enlargement
from Board Factor
2 4.8
3 7.8
4 10.3

Example of a Calculational Discussion

The teacher invited the students to look for patterns in the table of data
shown in Table 3:

MsR: What does that 10.3 tell us then?

Student: It goes up by 3.

MsR: It goes up by 37 So you mean this way it Eo&e up by 3 [sweeps hand
vertically down the column of y-values in the table]?

Student: Yeah, ’

MsR: That looks like 2 good pattern. Approximately 3? Very good.

The teacher’s gesture of sweeping vertically down the y-column likely
focused attention on the iterative pattern in the y-values. In addition, the “goes
up by” language also contributed to a focus an the y-values changing rather than
o a coordination between x-and y-values. When asked to predict the
enlargement factor when the projector was 5 m and 6 m from the wall, several
students responded that the enlargement factor would be 13 and 16, respectively,
suggesting that they attended only to the difference between successive y-values.
After additional data were collected (5 m, 13.0; 6 m, 15.8; and 1 m, 2.2), the
teacher again invited the students to look for patterns in the table:

Ms R: Let’s see. Sandra, can you tell us what pattern you see in the table?

Sandra: g l§oes up by like 2'or g

Ms R: ay. So she says that it increases by about 2 or 3. Every how often
does it increase by 2 or 37
Sandra: Every metre.

MsR.: Every metre. Okay. That's good.
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The teacher likely understood “about 2 or 3” as a ratio since she prompted
Sandra to notice how much the enlargement factor increased for each metre.
However, that value could have simply represented a difference between y-
values for Sandra and others. The instructor then explicitly directed the students
to focus on the iterative relationship among y-values by asking, “So if we took
one of the measurements that we have right now, how would we get to the next
number; would you add exactly 2 or exactly 37" In response, the students suggested
finding the average of the differences between successive y-values, which was
2.7. The teacher then emphasised that 2.7 meant “to get to the next number, you )
add approximately 2.7, so 2.7 is how much you do to one number to get the next
number”. Thus she encouraged the students to focus on the recursive relationship
between successive y-values rather than on the dependency relationship between
corresponding x- and y-values. ‘

The teacher then linked 2.7 to the equation y = [0+ [0x with language that
supported the notion that the students must add 2.7 “every time”. She explained
that students should first write the starting niunber, which is the “starting

number at the very beginning of the line”. She then instructed students to write
“+ 2.7x" because they added 2.7 every metre:

Ms R: Two point seven [writes 2.7 to show E =0 + 2.7]. And how often are
we adding 2.77

Students:  Every 1 metre.

MsR: . Every metre. So what do you want to put after the 2.72

Students: . . _

MsR: "x [adds x to the equation so it reads E =0 + 2.7x]. Can we put any

letter we want?
Students: Yeah.

Ms R: Sure. If you want, put x to stand for the distance or d for the distance,

whatever letter you want to use. )

The teacher likely understood that the students should write 2.7x because
the enlargement factor increased by 2.7 for every 1 metre. However, because the
students attended to the recursive relationship among the y-values rather than
to a multiplicative comparison between x and y, they might have interpreted the
teacher’s directions to mean that one should add an x to the equation because
they added 2.7 every metre (or “every time”). o

In addition, the instructor focused the students’ attention on determining _2.7
as what one would add to get to the next number independent of any considf:ratlon
of y or x. The only discussion of x occurred when the students had to write the
y =0+ Ox equation. At that point the instructor directed the students to add x
to the 2.7 in the equation, and then continued by stating that any letter cou_llr’.‘l
stand for the distance. She referred to x or d as “stand(ing) for the dls_tance p
rather than emphasising that x represents a numeric value for a giver} distance.
The teacher and the students also never discussed the meaning of ¥
iny=0J20x. Ms R no longer posed questions emphasising a rglationshlp
between x and y, as she had when the projector situation was first }ntroduged.
Instead, she eémphasised a calculational strategy for writing an equatlon_by first
writing a mathematical sentence with empty boxes and then showing the
students how to determine the values of the boxes.
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It is not difficult to see the origins of the students’ interpretation of a linear
equation as “y equals the ‘starting value’ plus ‘what it goes up by’ x” in light of
the instructional ‘treatment described above. Although the teacher may have
used language and particular questions that were unintended by the CPMP
authors, it is important to note that the sequence of observed activities in the
classroom for the overhead projector investigation followed the sequence
identified in the CPMP text. The teacher's method for writing an equation
described above evolved into the standard mathematical practice for
determining the equation of a line. Each time the students were confronted with
linear data, the teacher instructed them to locate the starting value, determine
“what it goes up by”, and then to enter these two values into the boxes in
y=0x0x. Throughout the remainder of the instructional unit, the students
and the teacher explored dependency relationships in a variety of situations,
including ticket prices and concert attendance, the stretch of rubber bands and
springs, the cost for soda machines, and speed with motion detectors. However,
once conventional representations were introduced, the instruction in each case
inevitably shifted from a relational to a calculational focus.

Discussion

The results of this study provide one plausible explanation for students’
interpretation of a linear equation as a storage container, given the nature of the
instructional environment. The students’ interpretations appeared to be linked to
the focusing phenomena of the teacher’s questioning pattern, which frequently
and regularly directed students’ attention to the calculation of b and m values and
the insertion of these values into the boxes in y = [J £ [lx. We conjecture that by
altering the nature of the focus of attention, we can significantly affect the nature
of students’ interpretations of linear equations. If instruction regularly directs
students’ attention to the relationship of covarying quantities, then students are
more likely to generate meaning for a linear equation as a statement about the
relationship between corresponding x- and y-values.

This study is limited in what it reveals about individual students’

understanding of dependency relationships in realistic situations. It was not
designed to determine whether the primary source of difficulty rests with
students” inability to form a linear relationship in realistic situations, or with
their inability to connect the realistic situation to conventional symbols. Most
likely, many students experienced both types of difficulties. Consequently, we
believe that a three-pronged approach is indicated in order to support students’
connections between realistic situations and conventional symbol systems.
“Specifically, there is evidence that instruction should direct students’ attention
to relationships between covarying quantities in each of three places: (a) in the
realistic situations, (b) when equations are created to represent relationships
among. quantities in situations, and (¢} when equations are interpreted or
“mapped back” inte the real-world situation. We will consider each

instructional idea in terms of Ms. R’s classroom and the overhead projector

situation.
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Idea 1

The first idea is to continue posing relational questions in realistic situations .
until students have formed a linear relationship between quantities in the
situation, and have conceived of the rate of change of the function as a conceptual
entity. For example, it is unclear whether the students in this ‘class correctly
interpreted the 2.7 in y = 2.7x as the change in enlargement factor or thought that
2.7 was simply the enlargement factor. The discussion of the overhead projector
situation began with a consideration of the relationship between the length of an
object and its projected image. The conversation moved quickly to the
consideration of a second function, namely the relationship between the distance
of the projector from a wall and the enlargement factor. It is doubtful that the
constancy of the enlargement factor was established for the first relationship
before moving to the second relationship. :

The teacher seemed to effectively direct students’ attention to the
multiplicative relationship between objects and their projected images.
However, once the class determined that the 16 cm projected image was 8 times as
large as the 2 an object, they moved on: The students missed the opportunity to
consider whether this multiplicative relationship was constant when the length
of the object varied. In contrast, a teacher could ask students what they think
will happen when she places an object that is 12 an long an the projector?
Similarly, students could consider the size of the enlargement factor for objects
with a range of lengths. Once the constancy of the enlargement factor is
established for the projector at a fixed distance from the wall, it makes more
sense to consider what happens when the projector is moved.

Prior to this study, we thought that students would form linear relationships
between independent and dependent variables because of their extensive hands-
on experience with those relationships. For example, because of physically
moving an overhead projector away from a wall one metre at a time and
calculating the subsequent enlargement factor, we thought that students would
likely notice a relationship between distance and the change of the enlargement
factor. We now believe that the dependency nature of linear relationships is not
inherent in the situations but requires focus and attention. We need to find ways
to redirect students’ attention away from the recursive relationship between
successive enlargement factor values and toward the relationship between the
distance and the enlargement factor. For example, different groups of students
could collect data for different values of the distance from the screen, yielding
different enlargement factors, and then share these findings in a common format
and consolidate them in order to identify a comnmon underlying relationship.

Idea 2

The results of the study suggest that it is important for the teacher to
continue to pose relational questions during the generation of the equation. One
could argue that the students learned exactly what they were taught, namely
that a linear equation is “y equals ‘the starting point’ plus ‘what it goes up by” x”.
However, that is not quite accurate. The results of the analysis of the classroom
discussion in which y = 2.7x was generated suggest that while the teacher was
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able to interpret the equation as a dependency relationship, many of the students
were not. Ms R indicated that she interpreted 2.7 as the change in the
enlargement factor for each 1 m of distance between the wall and the projector.
She likely interpreted 2.7x as the enlargement factor for a particular distance x
and viewed y = 2.7x as a relationship between corresponding distances and
enlargement factors. In contrast, the students appeared to have focused their
attention on 2.7 as part of a recursive numeric pattern. Thus, it is unclear what 2.7
meant for them in terms of the quantities in the situation. Furthermore, x was
likely interpreted as a label meaning “every time”. The ambiguity of terms such
as “goes up by” and “starting value” allowed for multiple interpretations of

.y = 2.7x. A successful alternative instructional approach is one that better aligns

the teacher's interpretation of the product of the discussion, namely, the

equation y = 2.7x, with the process by which she helps the students generate the
equation. _

Idea 3

Once the formal symbolic representation of equations has been introduced,
this study indicates that it could be critical to ask students to interpret the
meaning of each symbol and each arithmetic operation in terms of the referents in
the realistic situation. For example, the classroom discussion swrounding the
generation of the equation y = 2.7x would have locked quite different had the
teacher posed questions such as the following;

s  What do the x and the y represent in this overhead project situation?

e What does the 2.7 mean? Is it a distance, an enlargement factor, a
projected length or something else?

» What quantity is represented by 2.7x?

The language of quantities and units can focus attention on the development
of the dependency relationship in the situation and on connections between
meaning and symbols. Thompson (1995) recommends that teachers should insist
that any time students speak of a number within a real-world situation, they
speak of the quantity for which the number is a value. Furthermore, when
students use an arithmetic operation, they should name the quantities an which
they are operating, the quantity their calculation evaluates, and what the
operation accomplishes in the situation.

The ideas suggested by this study are in keeping with the spirit of Sfard’s
(2000) call “to orchestrate and facilitate the back-and-forth movement between
symbols and meanings” (p. 92). We believe that work needs to be done on three
fronts: in developing meaning for each referent as a conceptual entity; in using
symbols to meaningfully represent the dependency relationships in situations;
and in continuing to direct attention back to dependency relationships once the
conventional symbols are introduced. Further research needs to determine what
teaching strategies are likely to be successful in these educational tasks.

_of this paper.
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Blocking the Growth of Mathematical
Understanding: A Challenge for Teaching

Jo Towers
University of Calgary

This paper plesents and discusses some of the findings of 4 research project that
focused on teaching and learning in two high-school matiematics classrooms. The
focus of the sty was to consider the ways in which teachers’ classroom
interventions promote the growth of students’ mgfhematical understanding.

- Analysis of the data'xgsulted in the generation of a umber of themes describing
the teachers’ interventigns. One of these themes, thét I call blocking, is the subject
of this paper. The paper\discusses the implicationy of this intervention strategy for
teaching, learning, researdly, and teacher educaty On.

In 1990, Stevens, reporting o iberations of an International Congress
on Mathematical Education discussion gyoup of which he had been a member in -
1988, touched upon the problerh of, “when it is appropriate for a teacher to
intervene in order to redirect a child's thinking” (p. 231). Stevens reported that
the group was unable to reach agrdément, and suggested that the issue was
unresolved. The dilemma of when 6 intervene is an enduring one for teaching,
and continues to perplex and chall¢gnge phactitioners and researchers alike. This
paper addresses the dilemma of when to\intervene by presenting episodes of
classroom data that demonsjfate how particular teaching strategies and
interventions may in fact inhipit rather “thak promote the growth of students’
mathematical understanding ;

There exists a comprehefisive body of resea
and interaction in classroo

an teachers’ behaviour, talk,
yne way or another, ‘addresses
ature of teachers’ talk in
e of questions (Martino &
. For many years a great
e of teachers’ questions

mathematics classrooms/ and particularly the
Maher, 1994; Vace, 1993), have been widely dis
variety of authors havg been pointing to the prepondera
in the classtoom while bemoaning the dearth of studen ones (Chuska, 1995;
Dillon, 1987, 1988; Postman & Weingariner, 1969). Research has shown that
teachers commonly'ask as many as 50,000 questions a year and their students as
few as 10 each (Watson & Young, 1986). There are powerful\reasons why teachers
ask questions. Egwards (1980) points out that like lawyers) doctors, and police
officers, teachefs learn to ask questions, indeed m'ay have trained to ask
questions, that/ restrict the scope of the answers, so as to get oNly as much as is
required. (Wiat is required is open to debate, of course, but in\this sense it is
taken to mean required-in-order-to-keep-the-locus-of-control-firmly-in-the-
hands-of-the-teacher.) Edwards and Mercer (1987) report that interviewers,
therapists, barristers, and others whose job it is to ask questions are typically
advised that asking strings of direct questions is the surest way of shutting up the
interviewee. It should come as no surprise to us, then, that for many teachers ane
function of questioning is to maintain control of the classroom, so that intervening
is a management strategy as much as a teaching strategy.
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