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This article sets forth a way of connecting the classroom instructional environment
with individual students’ generalizations. To do so, we advance the notion of focus-
ing phenomena, that is, regularities in the ways in which teachers, students, artifacts,
and curricular materials act together to direct attention toward certain mathematical
properties over others. The construct of focusing phenomena emerged from an em-
pirical study conducted during a 5-week unit on slope and linear functions in a high
school classroom using a reform curriculum. Qualitative evidence from interviews
with 7 students revealed that students interpreted the m value in y = b + mx as a differ-
ence rather than a ratio as a result of counterproductive generalization afforded by fo-
cusing phenomena. Classroom analysis revealed 4 focusing phenomena, which regu-
larly directed students’ attention to various sets of differences rather than to the
coordination of quantities.

There is a growing concern among mathematics educators that many students
leave school unable to connect school mathematics to work or everyday settings.
As a result, many of the major curriculum development projects in the United
States have made connections with real-world situations a fundamental feature of
their materials. This article examines how students in one of the reform mathemat-
ics programs, the Core-Plus Mathematics Project (CPMP, Coxford et al., 1998),
generalized their understandings from realistic situations to novel settings and how
the classroom environment afforded those generalizations.

MATHEMATICAL THINKING AND LEARNING, 5(1), 1–36
Copyright © 2003, Lawrence Erlbaum Associates, Inc.

Requests for reprints should be sent to Joanne Lobato, Center for Research in Mathematics and Sci-
enceEducation,6475AlvaradoRoad,Suite206,SanDiego,CA92120.E-mail: lobato@saturn.sdsu.edu



We chose to investigate the mathematical topic of slope as the rate of change of a
linear function because it is conceptually complex for students, rich in terms of
real-world connections, and featured as an important topic in both CPMP and the
Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989).1

This study is not an evaluation of CPMP. We selected CPMP because it showed
promise for supporting the development of productive generalizations related to
slope and linear functions. Specifically, the curricular materials explore functions as
a way to describe dependency relations in complex, real-world situations and treat
slope as a rate of change of covarying quantities in multiple, real-world settings. We
expected thisapproach to increase the likelihood that studentswouldbeable tonego-
tiate the quantitative complexity of unfamiliar situations. It is a vast improvement
over the ubiquitous treatment of slope as a counting technique used to determine the
steepness of a line in a coordinate grid system, which can make applications not in-
volving graphs or steepness difficult for students.

The purpose at the outset of the study was to examine the nature of the general-
izations students formed about slope and linear functions as a result of their inter-
actions with a reform curriculum that regularly develops concepts in real-world
settings. Halfway through our investigation, we were surprised to find that all of
the students in the interview sample appeared to interpret m in y = b + mx as a dif-
ference rather than a ratio and to generalize that understanding to novel settings. In
response, we conducted a detailed analysis of the classroom videotapes to under-
stand how the instructional environment supported these unintended and unwanted
generalizations. We thought that by understanding this connection we would gain
insight into how to design an instructional intervention. A powerful construct,
which we call focusing phenomena, emerged from our analysis and allowed us to
connect students’ generalizations with the classroom instructional environment.
Our goals in this article are to (a) introduce the notion of focusing phenomena, (b)
report the findings from our analysis of the interview participants’ generalizations,
(c) identify four focusing phenomena from our analysis of the classroom data, and
(d) articulate a set of connections between the focusing phenomena and students’
generalizations.

CHARACTERIZATION OF FOCUSING PHENOMENA

Focusing phenomena are observable features of the classroom environment that
regularly direct attention to certain mathematical properties or patterns. Focusing
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1The National Council of Teachers of Mathematics (1989) Curriculum and Evaluation Standards
for School Mathematics is referenced rather than the more recent Principles and Standards for School
Mathematics (NCTM, 2000) because the Core-Plus Mathematics Project was developed to meet the
1989 standards and was written prior to the development of the 2000 principles and standards.



phenomena emerge not only through the instructor’s behavior but also through
co-constructed mathematical language, features of the curricular materials, and the
use of artifacts such as graphing calculators.

The construct of focusing phenomena is rooted in a situated view of the abstract-
ing process. Abstracting involves the identification of regularities in one’s activities,
the isolation of certain properties, and the suppression of other details (Frorer, Haz-
zan, & Manes, 1997; Harel & Tall, 1991). For example, a young child constructs
“eightness” by identifying a property common to her actions on sets of eight cups,
eight bowls, and eight bottles (namely, cardinality), while ignoring other properties
(e.g., thepropertyofholding liquid)and thenconsidering thecommonfeature in iso-
lation. There are several common interpretations of the meaning of abstraction. For
the purposes of this study, we are interested in the process of reflective abstraction,
which involves focusing on and isolating items (such as mathematical properties or
regularities) from the experiential flow, re-presenting those aspects of experience,
and coordinating them into new experiences (von Glasersfeld, 1995). We are not us-
ing abstraction as it is commonly used to suggest a quality of an object or system as
being nonconcrete, decontextualized, or theoretical.

We also follow Hershkowitz, Schwarz, and Dreyfus (2001) in their efforts to sit-
uate the abstraction process. Specifically, they point to the importance of attending
to the multifaceted context in which abstracting occurs:

A process of abstraction is influenced by the task(s) on which students work; it may
capitalize on tools and other artifacts; it depends on the personal histories of students
and teachers; and it takes place in a particular social and physical setting. (p. 196)

The notion of focusing phenomena accounts for the multiple agents that are in-
volved in the activity of directing students’attention to particular aspects of mathe-
matical activity.

Our examination of the links between focusing phenomena and individual stu-
dents’ generalizations is founded on the theoretical connection between the pro-
cesses of abstracting and generalizing. Abstracting is one of the processes involved
in the creation of a mental structure (von Glasersfeld, 1995), and generalizing in-
volves the extension of an existing mental structure to new objects and situations
(Harel & Tall, 1991). Consider the well-documented example of children’s exten-
sion of the concept multiplication makes bigger from the domain of whole num-
bers to rational numbers (Greer, 1992). Years of experience with whole numbers
likely directs students’attention to the pattern that the product is always larger than
either factor when both factors are whole numbers. Therefore, students generalize
on the basis of that experience. The curricular attention on whole numbers for
years prior to the introduction of rational number multiplication can be thought of
as a focusing phenomenon. This article investigates the many other ways in which
the classroom instructional environment, especially the teacher’s actions, supports
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particular generalizations by directing students’ attention toward specific mathe-
matical regularities and properties over others.

We conclude this section with a note about our use of terminology. Multiplica-
tion makes bigger is frequently and understandably referred to as an overgen-
eralization because mathematically incorrect statements often result and because
it is a generalization to a larger domain that subsumes the previous domain. How-
ever, the term overgeneralization may direct more attention to what is incorrect
than to what is generalized. Smith, diSessa, and Roschelle (1993) similarly argued
that researchers often focus on the “mis” part, rather than on the “conception” part,
of misconception. In this article, we report the generalizations that students de-
velop, even when those ideas are mathematically limited or incorrect in a larger
context. If we excluded mathematically incorrect generalizations, then we would
limit our ability to examine the links between the focusing phenomena in the class-
room instructional environment and students’ generalizations.

CONCEPTUAL ANALYSIS OF SLOPE

Much of our analysis involves making judgments about students’conceptual under-
standing of slope. Accordingly, we briefly describe our conceptual orientation to-
ward slope for the purposes of this study. One concept fundamental to the under-
standing of slope is the creation of a ratio of the variation of one quantity to the
associated variation of another quantity, where the two quantities covary. Thompson
(1995) warned of the dangers of confusing mental operations with arithmetic opera-
tions.Simplycalculatingaquotient in theslope formuladoesnot insure that students
have mentally formed slope as a ratio. One way to create a ratio is through the mental
operationofmultiplicativecomparison,namely, comparinghowmany timesgreater
is one quantity than another (Thompson, 1994). Another way to create a ratio is by
forming a “complex unit built of two composite units” (Lamon, 1995, p. 171). For
example, a speed situation may give rise to the ratio “10 cm traveled in 4 sec.” Ten
centimeters is a composite unit: Ten centimeters are considered as 1 ten-unit. Like-
wise, 4 sec is a composite unit. The ratio 10:4 is a complex composite unit formed by
relating the composite units 10 and 4. The ratio 10:4 can then be operated on as a sin-
gle entity, for example, forming the ratio 20:8 as two of the unit 10:4.

Quantitative reasoning is important in this study in part because of the emphasis
on real-world functions in CPMP. According to Thompson (1994), quantities are
constituted inpeople’sconceptionsaboutmeasurableattributesofobjects,events,or
situationssuchas length,age,or time.Quantitiesarenotnumbers, althoughnumbers
can be values of quantities, such as 6 feet or 40 years. Several aspects of quantitative
reasoning with slope are important for this study. First, although slope has its refer-
ence in the geometry of lines, it is also the ratio of the change in the dependent vari-
able to the change in the independent variable and therefore has meaning in tables,
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physical situations, and verbal descriptions of functions. Second, in a realistic situa-
tion, slope involves the formation of a ratio as the measure of a given attribute (what
Simon&Blume,1994,call a“ratio-as-measure”).Researchershave investigated the
process of creating ratios as measures of particular attributes such as constant speed
or the steepness of a ramp (Lobato & Thanheiser, 2000, 2002; Simon & Blume,
1994). A third complexity of slope is illustrated by the difficulty children have asso-
ciating the invarianceofa ratiowith theconstancyofaquantity, suchas tasteor speed
(Harel, Behr, Lesh, & Post, 1994). Relating the constancy of the attribute measured
by slope to the invariance of slope as a ratio constitutes an important part of under-
standing slope in real-world settings. Because we are interested in how students de-
velop a deep understanding of slope, we examine the multifaceted nature of operat-
ing with slope fluidly in quantitatively complex situations.

RESEARCH METHODS

Participants and Data Collection

This study was conducted as part of a continuing 5-year research project, the Gen-
eralization of Learning Mathematics Project. The collaborating school partner for
the project is an urban high school in a southwestern city in the United States. Sev-
enty-five percent of the school’s 2,436 students are Hispanic, and the remaining
students are Filipino (13.5%), White (5%), African American (3.5%), Asian or Pa-
cific Islander (2.5%), and Native American (0.5%). Twenty-five percent of the stu-
dents are classified as limited English proficient. The students perform below the
nation’s average on standardized achievement tests for mathematics and reading.
The school was selected in part because it was one of only two high schools in the
greater metropolitan area using the CPMP materials.

The collaborating teacher, whom we will call Ms. R, was recruited for the study
in part because she met the criteria set by Huntley, Rasmussen, Villarubi, Sangton,
and Fey (2000) for appropriate implementation of CPMP. That is, she followed the
intended curriculum, used graphing calculators in the classroom, and encouraged
cooperative learning strategies in heterogeneous groups. Ms. R had been recom-
mended by local mathematics education leaders as someone who was interested in
reform and who valued the development of conceptual understanding. She was en-
thusiastic about the CPMP program, particularly because it enabled her students to
make connections between mathematics and their daily lives. Ms. R had taught for
6 years at the time of the study and acted in a respectful and caring manner toward
her students. Data collection occurred in the Course 1 class (n = 36) that Ms. R
deemed the most productive in terms of classroom management and students’
readiness to learn.

Both individual interview data and videotaped classroom data were collected.
Two sets of semistructured interviews (Bernard, 1988) were conducted. The first
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interview occurred approximately 4 weeks into the instructional unit, after the rele-
vant topics of slope and the slope-intercept form of a linear equation had been de-
veloped. The second interview occurred 3 weeks after the completion of the in-
structional unit. Each interview lasted about 45 min and was videotaped. Great
effort was extended to establish rapport with all students and particularly with the
interview participants. Classroom observations occurred for 2 weeks prior to col-
lecting videotaped data, so that the students were familiar with the researchers by
the time the interviews occurred. As evidence of this familiarity, all of the inter-
view participants freely responded to some interview questions by simply stating
that they did not know the answer. Therefore the researchers were able to attribute
a reasonable degree of validity to the responses that the students did provide, and
made every effort to minimize responses based on social pressure.

Seven students participated in each interview. Two students from the first inter-
view were unable to participate in the second interview and were replaced by two
additional students. The interview sample was theoretically relevant rather than
random. Because our intent was to examine the generalizations that students con-
structed in this instructional environment, we selected students who appeared to be
capable of making sense of the content. Many of the students in the class had suffi-
ciently poor mathematics skills that they appeared to be unprepared for the CPMP
program. Therefore, all interview participants were identified by the classroom
teacher as students who were prepared for CPMP, based on the criteria of high
mathematics grades (in the A–C range), willingness to participate in classroom
discussions, and discipline in completing homework assignments. The sample in-
cluded three of the four top-performing students in the class. Gender-preserving
pseudonyms have been used for all participants.

Videotaped classroom data were collected for 5 weeks by placing one camera
in the back of the room. During whole-class discussions, the camera captured
the activity of the teacher and the students who presented their work at the
blackboard located in the front of the classroom. During small group work, the
camera captured the activity of a target group of four students. The class met
three times per week, once for 60 min and twice for 90 min. The target group’s
membership was fairly stable but not identical throughout the 5-week period.
The target group members were identified by the teacher as students who were
articulate, participated in class, and were earning a course grade of C or above.
Because these same criteria were used to recruit interview participants, all four
members of the target group were invited to participate in the interviews, but
only one student agreed to do so. By not requiring that interviewees comprise
the target small group, we were able to investigate the thinking of a greater num-
ber of students. Three researchers were present during each class session. One
operated the video camera, another took field notes, and the third took field
notes and visited the target small group at least once per class session. He or she
tried to engage the students in mathematical discussions and probe their under-

6 LOBATO, ELLIS, MUÑOZ



standing without disrupting the normal flow of the class and without intention-
ally offering new information.

Interview Instruments

In each interview, students were asked a series of questions involving linear func-
tion concepts arising from a single situation: a boogie board rental situation for In-
terview 1 and a leaky faucet situation for Interview 2. Situations and questions
were not designed to evaluate the CPMP curriculum and therefore did not span the
range of tasks found in the CPMP text. Rather, each task was constructed to iden-
tify what the students generalized. We used the boogie board data from the CPMP
textbook but presented them in a graph to see how students generalized their rea-
soning with a familiar data set from a tabular to a graphical setting (see Figure 1).
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FIGURE 1 Situation presented in Interview 1 (with Carissa’s line of best fit indicated by the
dotted line): The Oh-So-Cool Surf Company rents boogie boards at Long Beach. Naturally, their
business is affected by the weather. This graph shows boogie board rental data from nine week-
end days during July and August 1999. Adapted from Contemporary Mathematics in Context,
Course 1 Part A (p. 171), by A. F. Coxford, J. T. Fey, C. R. Hirsch, H. L. Schoen, G. Burrill,
E. W. Hart, et al., 1998, Chicago, IL: Everyday Learning Corporation. Copyright 1998 by The
McGraw-Hill Companies. Adapted with permission.



We designed the leaky faucet task to investigate what students generalized about
rates of change from their work with well-ordered tables in CPMP to a tabular situ-
ation with non-uniform intervals (Figure 2). (By “well-ordered tables,” we mean
tables presenting the values for the independent variable in uniform intervals.) The
leaky faucet situation was also different from any context the students had encoun-
tered in their textbook.

The analysis reported in this article is part of a larger study that examined stu-
dents’ generalizations related to important linear function concepts. This article
presents the results of students’ responses to a request to write and interpret an
equation for the graph provided in Interview 1 and for the table presented in
Interview 2.

Overview of the CPMP Instructional Unit

The classroom observations occurred during the first 5 weeks of instruction in
Course 1, Unit 3, “Linear Models.” We refer to the portion that we observed as the
instructional unit although it was about two thirds of Unit 3; the remainder of Unit
3 addressed systems of linear equations. The unit consisted of several multiday les-
sons in which ideas were regularly developed through investigations of real-world
situations. Figure 3 provides an overview of the mathematical ideas and the realis-
tic situations as they were explored in the classroom. The instructional unit was or-
ganized around understanding linear equations in the slope-intercept form and
making connections among realistic situations, tables, equations, and graphs.
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FIGURE 2 Situation presented in Interview 2: Cassandra decided to see how fast her bathtub
faucet was leaking. She got a large container and put it under her faucet when she got up in the
morning, and then checked periodically during the day to see how much water was in the con-
tainer. She wrote the times and the amounts down. They are recorded in the table above.



The CPMP approach relies on modeling and linked representations to develop
algebraic ideas. For example, the unit began with a 3-day activity in which students
explored a linear relation between the distance of an overhead projector from a
wall and the enlargement factor between the length of an image placed on the pro-
jector and the length of its projected image. By representing certain aspects of the
problem situation with tables, students had the opportunity to experience an ap-
proximately linear relation between the distance of the projector from the wall and
the enlargement factor. Students used graphing calculators to locate linear models
for various scatterplots of realistic data, thus gaining informal experiences linking
linear equations with graphs. Students also explored the rate of change of a variety
of linear functions in real-world situations before the term slope was introduced
and defined.
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FIGURE 3 Overview of the development of linear equations and slope in the Core-Plus
Mathematics Project unit.



Lessons were designed to promote cooperative learning. We observed the use of
small group activities during 12 of the 15 class sessions. The textbook included
many exploratory and discovery-oriented problems. The teacher blended a variety
of instructional formats—whole class discussion, data collection, small group ac-
tivities, and some direct instruction. The teacher faithfully followed the CPMP
curriculum, except for supplementing with some additional practice and with a les-
son on motion detectors.

Data Analysis

We began by analyzing transcripts of the interview data. Our goal was to infer cate-
gories of meaning for the m value in the students’ linear equations. Analysis of the
interview data followed the interpretive techniques in which the categories of
meaning were induced from the data (Glaser & Strauss, 1967; Miles & Huberman,
1994; Strauss & Corbin, 1990). Each of the authors developed analytic categories
and coded the transcripts from Interview 1 separately. We sorted out troublesome
cases through a process of argumentation and settled on a common set of catego-
ries. We tested for the validity of the categories by reviewing the transcripts for In-
terview 1, seeking confirming as well as disconfirming evidence. We then applied
the categories to the data from Interview 2 and made appropriate modifications to
the categories.

Once we identified categories of meaning for m, we analyzed the classroom
videotapes. Our primary goal was to understand how the instructional environment
may have supported the development of the students’ meanings for m. We limited
the scope of our investigation to the ways in which the instructional environment
directed students’ attention toward certain mathematical properties over others.
The classroom analysis draws on the constant comparative method used in the de-
velopment of grounded theory (Glaser & Strauss, 1967; Strauss & Corbin, 1990).
It involves constantly comparing data as they are analyzed against conjectures gen-
erated thus far in the data analysis and revising conjectures accordingly (Cobb &
Whitenack, 1996; McClain & Cobb, 2001). In addition to being compared against
conjectures, incidents of the participants’ activity in the classroom are also com-
pared against one another. This gives rise to general themes or patterns and leads to
an ongoing iterative refinement of the broad theoretical categories developed from
the data (Cobb, Stephan, McClain, & Gravemeijer, 2001).

Next, we tried to explain how the instructional environment supported each of
the categories of meaning for m by looking for regularities in the ways in which the
environment focused students’ attention on certain mathematical properties. The
interview participants referred to the m value in their linear equations as “what it
goes up by.” Therefore, we began by initially coding the classroom transcripts for
each instance of the “goes up by” language. Five meanings emerged (which we re-
port in Part 2 of the Results section), including each of the meanings for m identi-
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fied in the interviews (which we report in Part 1 of the Results section). We com-
piled all of the episodes in which slope was formally or informally explored in
class. For each category of meaning for m, we assembled the relevant classroom
episodes and then created and coded categories for the features that appeared to fo-
cus students’ attention on that particular meaning for m. We refer to these as in-
structional categories to differentiate them from the categories of meaning for m.
We then made a final pass through the data, making connections across the instruc-
tional categories. As a result, the central theoretical construct of focusing phenom-
ena emerged. This article presents a representative example of each of the four fo-
cusing phenomena that emerged during our analysis.

RESULTS

Part 1: Students’ Generalizations About Linear
Equations and m

Overview

All of the students who were able to write an equation for a given line (Figure 1)
or table (Figure 2) wrote an equation of the form y = � ± � x. They referred to the
value in the first box as the “starting point” and the value in the second box as
“what it goes up by.” Therefore, they appeared to have generalized a linear equa-
tion as “y equals the ‘starting point’ plus ‘what it goes up by’ x.” One participant
was unable to write an equation for the line, and two participants were unable to
write an equation for the table. We present the four interpretations that students
held for the value of the second box in y = � ± � x, which we refer to as m for the
sake of brevity, although the teacher used the box symbol rather than m in the class-
room. We demonstrate that in each case the students appeared to have conceived of
m as a difference rather than a ratio and generalized this understanding to the novel
interview tasks.

Interpretations of m

Scale of the x axis. When responding to the graphical situation in Interview
1 (see Figure 1), roughly one half of the students identified the value for m as the
scale of the x axis. They referred to this value as “what it goes up by,” which ap-
peared to mean the interval between successive tick marks along the x axis or
“what the x’s go up by.” For example, Enrique wrote the equation y = 76 + 2x and
explained his choice of 2 in terms of the scale of the x axis, “This is the temperature
you start at [pointing to 76], then every time one x goes up, every time a different
number comes up, it goes up by 2, like, 78, 80, 82 [sweeping his right hand along
the x axis from left to right], so it goes up every time by 2.” Linnea and Ruben also
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used 2 as the value for m in their respective equations, y = 5 + 2x and y = 10 + 2x,
and they explicitly referred to the constant difference of 2 in the numbers along the
x axis. A fourth student, Adolfo, also concentrated on the scale of the x axis, al-
though he was unable to produce an equation. He marked the axis with additional
tick marks so that it read 76°, 77°, and 78°. When asked to write an equation, he
stated, “This one is going by 1s, like this [pointing to the x axis], and I think it has to
do something about temperature, like, plus 1.” However, he then identified the
scale of the y axis as 5 and was not sure which scale to use.

Change in y values. There were four instances in which students inter-
preted m as the change in y values. In the tabular setting used in Interview 2 (see
Figure 2), the dominant strategy for determining the value of m was to identify the
difference in y values without regard for the change in corresponding x values. All
of the participants expressed difficulty with the table because the intervals were not
uniform. For example, Adolfo stated, “I can’t figure out a way to tell you what it’s
going by because the number keeps on getting bigger and bigger; from 2 to 12 it’s
10, then it doubles because 12 plus 12 is 24.” Although the faucet dripped 10 oz be-
tween 7:00 to 8:15, he resolved his dilemma by deciding, “I’ll just pretend it was
from 7:00 to 8:00.” Subsequently, he used 10 oz per hour as the value for m. Linnea
and Carissa also determined m by choosing an arbitrary successive pair of y values
in the table, calculating the difference, and then using that difference to write an
equation. None of these students attended to the corresponding change in x values.

Change in x values. One student, Ruben, originally wrote the equation y =
10 + 2x for his line of best fit for the task shown in Figure 1, choosing the scale of
the x axis as the value of m. However, he then indicated that he was unsure about
his choice and switched to a different method for determining m. He identified two
nonsuccessive points on the graph with x values of 78 and 83, found the difference
to be 5, and changed his equation to y = 10 + 5x. Therefore, he appeared to view m
as “what the xs go by,” first as the scale of the x axis and later as the change in x val-
ues for two points.

Change in y values with disconnected ratio reasoning. Two students
demonstrated some degree of reasoning with the ratio of the change in y values to
the change in x values. However, both students ultimately treated m as the change
in y values. Enrique represented the other part of his ratio (the change in x values)
as the b value in his equation, whereas Carissa appeared to reason only implicitly
with the change in x values and did not represent this value explicitly in her equa-
tion. We describe each student’s work to capture the subtle but important differ-
ences in their reasoning.

When asked how quickly the water was leaking given the table of data shown in
Figure 2, Enrique correctly determined that 2 oz of water leaked every 15 min. He
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provided some evidence of ratio reasoning by iterating the 2:15 unit to solve pre-
diction questions. However, when asked to write an equation, he wrote, “T = 15 + 2
oz.” Enrique explained his thinking, “So time is for T and 15, that would be like for
15 minutes, and then you add 2 because it’s going 2 ounces every 15 minutes.” The
main idea in his explanation is that 2 oz drip every 15 min. He captured this ratio in
his equation by placing 15 in the first box (which he also referred to as the starting
point) and 2 in the second box. Although Enrique appeared able to construct a ratio
as he wrote the equation, he treated m as the change in y values and b as the change
in x values.

Carissa also appeared to demonstrate some limited ratio reasoning, but the evi-
dence is ambiguous. Carissa successfully used the slope formula for the task
shown in Figure 1. She located x values of 78 and 80, found their associated y val-
ues of 15 and 10, calculated the change in y values as 5, and explained that “it’s
[meaning the line] going up by 5s.” When asked what she would do with the 5,
Carissa obtained 2.5 by dividing 5 by 2. Although Carissa could carry out the cor-
rect calculations, there is mixed evidence that she reasoned with ratios when she
divided 5 by 2. In particular, we would expect a student who had formed a ratio to
be able to reason that if 5 more boogie boards are rented when the temperature in-
creases by 2°F, then 2.5 more boogie boards will be rented for every 1°F increase
in temperature. In contrast, when asked about the meaning of 2.5 in her equation y
= 8 + 2.5x, Carissa explained that 2.5 meant “how much it’s changing by every
time.” When questioned about the meaning of “every time,” she elaborated that the
sales increased by 2.5 boogie boards for every 2°F increase in temperature. It is
possible that Carissa misspoke and that every time actually meant 2.5 boogie
boards for every 1°F increase. The interviewer returned to this question later in the
interview to find out.

When the interviewer asked Carissa to interpret 2.5 again later in the interview,
Carissa again maintained that 2.5 more boogie boards were sold for every 2°F in-
crease. Then the interviewer drew Carissa’s attention to the apparent contradiction
between this interpretation and Carissa’s earlier statement that 5 more boogie
boards would be rented for every 2°F increase. Carissa responded by changing her
equation from y = 8 + 2.5x to y = 8 + 5x. Instead of correcting her interpretation of
2.5 to mean 2.5 boogie boards per 1°F increase in temperature, Carissa clearly
chose a difference of 5 boogie boards as the value for m. She seemed to know that
temperature was important because she stated that 5 more boogie boards were
rented for a 2°F increase, but she did not capture the associated temperature value
explicitly in her value of m in the equation. Because 2°F corresponds to the scale of
the x axis, Carissa could have conceived of m as the amount the line goes up by
(i.e., the change in y values) over an implicitly understood interval marked by the
tick marks on the x axis.

There is additional evidence to support the conjecture that Carissa viewed m as
a difference rather than as a ratio. The interviewer asked if Carissa could substitute
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100 for x in the equation y = 8 + 2.5x to determine the number of boogie boards
rented at 100°F. Carissa explained that this would be impossible because “that’s
like the temperature [the 100°F], and this is how many boogie boards they are sell-
ing (pointing to the 2.5 in her equation).” Therefore, she identified 2.5 as the num-
ber of boogie boards, not as a ratio of boogie boards to temperature, and main-
tained that she could not multiply boogie boards by temperature.

Enrique and Carissa both appeared to treat m as a change in y values. However,
they also seemed to understand that two quantities, the change in y values and the
change in x values, were important. For Carissa, the change in temperature was im-
plicit and not represented in her equation. For Enrique, the change in time was ex-
plicitly represented in his equation but as the y intercept value. This necessitated
the creation of a separate category for their reasoning rather than collapsing it with
the change in y values category.

No m value produced despite use of the slope formula. Two students
recalled the slope formula but ran into difficulties when using it and were unable to
produce a value for m. In Priyani’s case, the difficulty seemed to be conceptual in
nature. When trying to calculate m for the leaky faucet data (Figure 2), Priyani re-
cited the slope formula as she understood it:

Ms. R told us that what is changing here [points to the water column] and what is
changing here [points to the time column], you divide both of them and then you get a
rate of change. And whatever number you get it, you’re supposed to put here [points
to the second box in y = � + �x].

However, she could not proceed because the table did not have uniform intervals.
Specifically, Priyani stated, “I’m not sure … you see here it’s going by 15, and then
it’s going by 30, and then it’s going by 1 hour and 15 minutes, so I don’t know how,
how to find out what it’s going by.” For someone who is mathematically sophisti-
cated, ∆y ÷ ∆x represents a corresponding set of y and x intervals that can be nor-
malized to a particular amount of the y quantity per one unit of the x quantity
through the operation of division. In contrast, Priyani appeared to conceive of ∆y
(or ∆x) as a set of constant differences of the y (or x) quantity. Consequently, when
the intervals were not constant, she could not proceed.

Summary of Part 1

All of the students who were able to write an equation for a given line or table
appeared to have generalized a linear equation as “y equals the ‘starting point’ plus
‘what it goes up by’ x.” Students interpreted the m value in their equations as the
scale of the x axis, the change in y values, or the change in x values. Two students
demonstrated some ratio reasoning, but neither student explicitly accounted for the
change in x values in the value of m. Therefore, all of the interview participants ap-
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peared to have formed an understanding of m as a difference rather than a ratio and
generalized this understanding to the novel interview tasks.

Part 2: How Four Focusing Phenomena Supported the
Generalization of m as a Difference Rather Than a Ratio

Given that the interview sample was comprised of the higher performing and more
diligent students in the class, one might expect that the interview participants
would have encountered little difficulty interpreting m as a ratio. We were particu-
larly surprised when about one half of the participants treated m as the scale of the
x axis, because the nature of the function is not dependent on the value chosen for
the scale of either axis. We therefore sought to explain how the instructional envi-
ronment afforded each of the categories of meaning for m by looking for regulari-
ties in the ways that the environment focused students’ attention on certain math-
ematical properties. The central theoretical construct of focusing phenomena
emerged from our grounded analysis. Specifically, we identified four major focus-
ing phenomena: (a) the “goes up by” language, (b) the use of well-ordered tables,
(c) the ways in which graphing calculators were used, and (d) the emphasis on un-
coordinated sequences and differences. This article presents a representative ex-
ample of each of the four focusing phenomena.

We show how the focusing phenomena regularly directed students’ attention to
the rate of change as various differences—∆y, ∆x, and the scale of the x axis—
rather than to the coordination of two quantities (see Figure 4). As seen in Figure 4,
these four categories interact and affect one another. In particular, the “goes up by”
language occurred throughout the entire instructional unit and served to facilitate
the attention on differences within each of the other three focusing phenomena.

Focusing Phenomenon #1: “Goes Up By” Language

Ambiguity of the language supports multiple interpretations of m. We
coded the classroom transcripts for each occurrence of the “goes up by” language.
Five meanings emerged for “goes up by:” (a) the change in y values of the function
per one unit change in x values (what the line goes up by), (b) the change in y val-
ues of the function (what the ys go up by), (c) the change in x values of the function
(what the xs go up by), (d) the scale of the x axis (what the xs go up by), and (e) the
scale of the y axis (what the ys go up by). Only the first is a mathematically correct
meaning for slope; the other interpretations represent differences. We provide evi-
dence that because the teacher and the students used the phrase “goes up by” in five
different ways, some students conflated the various meanings. Furthermore, be-
cause the teacher associated slope with the first interpretation of “goes up by,”
some students apparently linked the other interpretations with slope.
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The ambiguity of the “goes up by” language allowed the students and the
teacher to talk past one another. For example, the following excerpt from Day 7
demonstrates how the students and the teacher could have used the same phrase to
refer to different quantities. The discussion was about a linear graph showing the
relation between a weight on a rubber band and its corresponding length:

Ms. R: … and so if you, if I ask you what’s the rate of change of this
graph, what do they really want to know, do you think?

Salvador: A rate.
Ruben: How much it’s going up by.
Ms. R: How much it’s going up by. That’s really good, Ruben. The rate of

change is basically how much is this line going up by, how much
it’s changing … the rate of change is the change in the length di-
vided by the change in the weight. Because the rate of change is
specific to one thing; they want to know how much is it changing
or how much is it going up by for every one change in the weight.

The teacher used “goes up by” to refer to a ratio, as indicated by the last sen-
tence of the excerpt. In contrast, Ruben could have interpreted the phrase as the
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scale of the x axis or the change in x values of the function, as he did during the in-
terviews. Because the students and the teacher could simultaneously hold different
meanings for the same phrase, they engaged in discussions in which they never had
to clarify specific meanings for rate of change beyond “goes up by.”

Focus on the change in y values. We illustrate how the “goes up by” lan-
guage focused attention on slope as a difference rather than a ratio by examining
the focus on the change in y values during the first activity of the unit. Students col-
lected data and developed a table (see Figure 5) depicting an approximately linear
relation between the distance of an overhead projector from a wall and the enlarge-
ment factor between a real and projected image. Once the second through fourth
rows of the table shown in Figure 5 had been completed, the teacher invited the stu-
dents to look for patterns.

Ms. R: What does that 10.3 tell us then?
Student: It goes up by 3.

Ms. R: It goes up by 3? So you mean this way it goes up by 3 [sweeps
hand vertically down the column of y values in the table]?

Student: Yeah.
Ms. R: That looks like a good pattern. Approximately 3? Very good.

This excerpt includes the first instance of the “goes up by” language in the in-
structional unit. The students first developed this language, and it was later appro-
priated by the teacher. The teacher’s gesture sweeping vertically down the y col-
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umn likely focused additional attention on the y values. When asked to predict the
enlargement factor when the projector was 5 m and 6 m from the wall, several stu-
dents responded that the enlargement factors would be 13 and 16, respectively,
suggesting that they attended to the difference between successive y values. Once
all the data were collected, Ms. R again invited the students to look for patterns in
the table:

Ms. R: Let’s see. Sandra, can you tell us what pattern you see in the table?
Sandra: It goes up by like 2 or 3.
Ms. R: OK. So she says that it increases by about 2 or 3. Every how often

does it increase by 2 or 3?
Sandra: Every meter.
Ms. R: Every meter. OK. That’s good.

Clearly the teacher understood “about 2 or 3” as a ratio because she prompted
Sandra to notice how much the enlargement factor increased for each meter. How-
ever, that value could have simply represented a difference between y values for
Sandra and others. The change in y values and the ratio of ∆y to ∆x are cal-
culationally the same when ∆x = 1 but not conceptually the same. We elaborate on
these conceptual differences, as well as on the significance of this initial focus on
the change in y values, when we present an example near the end of the next section
in which ∆x ≠ 1.

Focusing Phenomenon #2: Well-Ordered Tables

Focus on the change in y values when ∆x = 1. In addition to the “goes
up by” language, the use of well-ordered tables encouraged a focus on the change
in y values. As described previously, the unit began with the creation of a well-or-
dered table in which the differences between x values was 1 (see Figure 5). The
teacher explicitly directed the students to focus on the change in y values by ask-
ing, “So if we took one of the measurements that we have right now, how would we
get to the next number, would you add exactly 2 or exactly 3?” The students sug-
gested finding the average of the change in y values, which was 2.7. The teacher
summarized the meaning of 2.7 by stating, “To get to the next number, you add ap-
proximately 2.7, so 2.7 is how much you do to one number to get to the next num-
ber.” Therefore, she placed an emphasis on the iterative relation between succes-
sive y values in the table.

In addition, the instructional environment supported a connection between the
change in y values and the value of the second box in y = � ± �x. The teacher
explained that students should first write the “starting number,” which is the “start-
ing number at the very beginning of the line.” She then directed students to focus
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on the change in y values to complete the equation, as indicated in the following
excerpt:

Ms. R: So you’re starting at 0. And to get to the next one, what are we
doing?

Students: Adding.
Ms. R: Adding. So, I write plus [writes + to show, E = 0 +]. Then how

much typically are we adding to get to the next one?
Students: 2.7.

Ms. R: 2.7 [writes 2.7 to show, E = 0 + 2.7]. And how often are we adding
2.7?

Students: Every 1 meter.
Ms. R: Every meter. So what do you want to put after the 2.7?

Students: x.
Ms. R: x [writes x to show, E = 0 + 2.7x].

The teacher ended by cautioning the students to “remember what is the starting
value and what you are doing to get to the next value.” Therefore, she directed the
students’ attention to the change in y values rather than to the dependency relation
between the corresponding x and y values. This was possible because the data were
well ordered, with the change in x values being 1. In these cases, the change in y
values resulted in the correct slope value.

The teacher saw the significance of the change in x values being 1 because she re-
peatedlyemphasized that2.7meant2.7 forevery1m.However, thestudentsmaynot
haveunderstood that thevalueof1wassignificant, because the teacherdirected their
attention to the 1 m after the 2.7 had already been produced. Some students could
have concluded that they should place the change in y values in the second box in a
linear equation but interpret that value in terms of the change in x values. For exam-
ple, if the change in x values had been 3, the students might write the equation with m
as 2.7 but then interpret m as 2.7 for every 3 m. This is consistent with Carissa’s work
in Interview1, inwhichshecalculatedmas thechange inyvaluesbut interpretedm in
terms of some implicitly understood amount of the other variable (presumably the
interval between successive tick marks on the x axis).

Focus on the change in y values when ∆x ≠ 1. During every class activ-
ity involving a well-ordered table in which the change in x values was not 1, it be-
came clear that many students associated m with the change in y values. A typical
example occurred during the warm-up for Day 10. Students worked individually to
find the rate of change of a function depicted in tabular form. The values in the x
column were 0, 3, 6, and 9, and the corresponding y values were 20, 32, 44, and 56.
During the class discussion of the problem, the teacher guided a student through
the process of calculating the rate of change, reminding him to divide his response
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of 12 by the change in x values. She noted the widespread response from students
that the slope of the function was the change in y values: “A lot of people put 12 as
their slope. You’re right that it is going up by 12 when x goes up by 3, but we want
to know what it goes up by if x is only going up by 1.”

The fact that the change in y values produces a correct slope when the change in x
values is 1, the teacher’s emphasis on this sequence of differences, and the fact that
the unit began with a focus on the change in y values, might have set the tone for the
entire unit. The focusing phenomena of well-ordered tables could have contributed
to the persistence of the conception that the slope was the change in y values. How-
ever, as seen in Part 1 of the Results section, many students also interpreted m as ei-
ther the change in x values or the scale of the x axis. The next two sections detail the
ways inwhich the instructionalenvironmentsupportedafocusonthesedifferences.

Focusing Phenomenon #3: Graphing Calculator

In 4 of the first 6 days of the instructional unit, the use of the graphing calculator
and the “goes up by” language supported a focus on differences, specifically the
change in x values of a function and the scale of the x axis. The teacher referred to
bothof thesevaluesaswhat thexs“goupby” in thecontextofenteringvalues into the
calculator. We show that the instructional environment directed students’ attention
to the change in x values and to the scale of the x axis. We then demonstrate how some
students failed to distinguish between the change in x values and the scale of the x
axis,andhowthesequantitieswereultimatelyconflatedwith themeaningforslope.

Focus on the change in x values with table setup. The following exam-
ple illustrates the manner in which the students and the teacher created graphs and
tables of linear data with the graphing calculator. To create a table of values for a
given function, students first enter an equation and then use the table setup feature
shown in Figure 6. To use this feature, students must determine the table’s first x
value, called TblStart, and the change in x values, called ∆Tbl. The students then
made predictions with the table feature. For example, in the following excerpt
from Day 2, the students typed in the equation y = 2.7x. The teacher showed the
class how to use the table setup feature to find the corresponding y value when x
was 2.5 by creating a table that included 2.5. Her use of the phrase “going by” to re-
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fer to ∆Tbl, and her emphasis on using the table setup feature encouraged the stu-
dents to attend to the change in x values:

What could we put on table setup to get that to come out? That was the question.
Going by .5s? And you could start it where? You could start at 0 [referring to the
TblStart input] going by .5s [referring to the ∆Tbl input] if you guys want to.

Focus on the x axis scale with the window function. The only other cal-
culator function the students and teachers used in this instructional unit was the
window function, which allows users to specify the domain and range of graphs.
After the students entered data or an equation into their calculators, they used the
window function to input the minimum and maximum values for x, y, and the scale
of each axis (see Figure 7). In the following excerpt, the teacher demonstrated how
to recreate the graph shown in Figure 8. She entered 0 for Xmin and 80 for Xmax.
The next prompt was Xscl, which refers to the scale of the x axis:

Ms. R: And x scale [points to Xscl function on the overhead calculator
display] means, what are they counting by. Look at the graph on
your paper—What are they counting by on the bottom?

Student: 10.

The teacher used the phrase “counting by” to refer to the scale of the x axis. It is
possible that the use of “counting by” rather than “going by” might have helped the
students distinguish the scale of the x axis from other constructs “going by” re-
ferred to. However, the students used “going by” to refer to scale of the x axis,
which suggests that they did not distinguish between the two phrases.

The graphing calculator requires the user to input a value for the scale of the x
axis before viewing a graph or using a table. The teacher’s attention to this require-
ment further highlighted the importance of considering the scales on the x and y
axes. She encouraged the students to articulate a value for the scale of the x axis for
every calculator-related problem. Therefore, the instructional environment empha-
sized a focus on the scale of the x axis to a degree that might not have occurred
without the use of the calculator.
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Conflation of ∆x and the x-axis scale. The following excerpt demonstrates
that the students in the target group appeared to conflate the change in x values with
the scale of the x axis. Students used the calculators to create a scatterplot of the
data in Figure 9, showing the relation between predicted concert audience size and
ticket price. Enrique helped Marina determine what to enter for each calculator
prompt in the window function (Figure 7). They successfully entered minimum
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FIGURE 8 Graph showing the relation between the ranking of a television show and the au-
dience size for the show. From Contemporary Mathematics in Context, Course 1 Part A
(p. 162), by A. F. Coxford, J. T. Fey, C. R. Hirsch, H. L. Schoen, G. Burrill, E. W. Hart, et al.,
1998, Chicago, IL: Everyday Learning Corporation. Copyright 1998 by The McGraw-Hill
Companies. Reprinted with permission.

FIGURE 9 Data showing predicted concert audience sizes for various ticket prices. Adapted
from Contemporary Mathematics in Context, Course 1 Part A (p. 176), by A. F. Coxford, J. T. Fey,
C. R. Hirsch, H. L. Schoen, G. Burrill, E. W. Hart, et al., 1998, Chicago, IL: Everyday Learning
Corporation. Copyright 1998 by The McGraw-Hill Companies. Adapted with permission.



and maximum x values for the x axis of their graphs. Then Enrique, looking at the
Xscl prompt on the calculator, asked Marina, “What are we going up by?”

Enrique: What are we going up by?
Marina: It’s going by 5, 6, 7, 7.5, oh, it’s going up 2.5.

Enrique: No.
Marina: Yes it is.

Enrique: What, what, what, what?

Enrique used “going up by” to refer to the scale of the x axis. However, Marina re-
sponded by referring to the change in x values in the table. The students’use of “goes
up by” in combination with their calculator usage helped support an association be-
tween the scale of the x axis and the change in x values of the function. Furthermore,
because both constructs involve x values, it is reasonable that some students viewed
each as “what the xs go by.” The commands ∆Tbl and Xscl were mediated by the
same physical device. This, along with the “goes up by” language, may have contrib-
uted toan inappropriateconjoiningof the twoconstructs,particularlybecause the ta-
ble set and window functions were the only nonarithmetic calculator functions used
in the instructional unit. In addition, when creating a graph from a well-ordered ta-
ble, it is natural to use the ∆x value as the parameter for Xscl, further linking the two.
However, students may not have realized that the x values of a function are independ-
ent of the scale of the x axis, and that ∆Tbl can always be chosen so that it differs from
Xscl. Finally, the same language referred not only to the x-axis scale and the change
inxvalues, but also to thevalueofm. In thenext section,weshowthat the studentsul-
timately conflated these differences with the meaning for the slope of a linear func-
tion. This conflation could have supported students’interpretations of m as the scale
of the x axis, as reported in Part 1 of the Results section.

Focusing Phenomenon #4:
Uncoordinated Sequences and Differences

The teacher introduced uncoordinated sequences as a way of helping students
manage the difficulties of calculating m in well-ordered tables with ∆x ≠ 1 and in
graphs with the x axis scale not equal to 1. The teacher and the students engaged in
three types of activities that employed uncoordinated sequences of numbers: (a) de-
termining the slope by creating uncoordinated sequences in a table, (b) linking the
slope formula to two uncoordinated sequences and differences in a table, and (c)
linking the slope formula to two uncoordinated differences in a graph. In each case,
students’attention became focused on differences instead of on the ratio between the
changes in corresponding y and x values. In the first case, the students and teacher fo-
cused on the change in y values. In the second and third cases, they focused on ∆y and
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∆x in the slope formula as uncoordinated differences. In the third case, they also fo-
cused on the scale of the x axis. We describe each case in turn.

Focus on the change in y values through the creation of uncoordinated
sequences in a table. On Day 3, the students first encountered a well-ordered
table in which the change in x values was not 1 (see Figure 10). The table repre-
sented another linear relation in the overhead projector situation, namely the rela-
tion between the length of any line placed on the projector (sketch length) and the
length of the projected image (screen image length).

As the students tried to complete the table, they initially focused on the change
in y values. Specifically, Jerry remarked, “So what’s it going by? 0, 6, 12, 18, … .”
Enrique noted, “It looks like it’s going by 6.” One student, Soledad, noticed that
she could also multiply x by 3 to obtain a corresponding y value, but the other
group members ignored her and continued to find a way to use 6 in their equations.
The following excerpt shows that the teacher responded by encouraging the stu-
dents to write the “in between” values in both rows so that the new table would in-
crease in increments of 1 for x:

Ms. R: Remember when we’re describing a pattern it’s best if we describe
the pattern for what happens when you add just 1 unit extra to it.
So instead of adding 2 centimeters, what do you think the new pat-
tern would be if we put in the missing numbers in between [writes
1 between 0 and 2 and writes 3 between 2 and 4 in the top row of
the table]? How much would it be going up by here [points be-
tween the 0 and 6 in the bottom row]?

Salvador: 3.
Ms. R: By 3. Salvador says 3. Does that make sense?
Jerry: Yes.

Ms. R: What would this one be right here [points between 6 and 12]?
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FIGURE 10 Data indicating a relation between the length of line segments drawn on an over-
head transparency and their projected images. Adapted from Contemporary Mathematics in
Context, Course 1 Part A (p. 161), by A. F. Coxford, J. T. Fey, C. R. Hirsch, H. L. Schoen,
G. Burrill, E. W. Hart, et al., 1998, Chicago, IL: Everyday Learning Corporation. Copyright
1998 by The McGraw-Hill Companies. Adapted with permission.



Andy: 9.
Ms. R: 9. What would this one be in between here [points between 12

and 18]?
Enrique: 15.

Ms. R: So if we were going up every 1 centimeter, and making each pic-
ture 1 centimeter longer, how much would the bottom number go
up by?

Students: [No response.]
Ms. R: 3, right? Okay, so in this case for 2 centimeters we saw it’s going

up 6, but if we were just looking at 1 instead of 2, it looks like it’s
going up by … How many?

Students: [No response.]
Ms. R: For 2 it was 6, for 1 it’s … ?

Students: 3.
Ms. R: So the equation will be I equals 3 times S [writes I = 3S].

The teacher’s direction to fill in the “in between” numbers for both rows in the
table meant that the students could then use the change in y values as the m value of
an equation. Ms. R’s language “for 2 it was 6 and for 1 it’s 3” indicates that she
conceived of ratios in the table. However, the students could have interpreted the
new table as representing two uncoordinated sequences of numbers. The instruc-
tion and the co-constructed use of “goes up by” could have contributed to the focus
on two uncoordinated sequences of numbers. In particular, the teacher used the
“goes up by” language to note that the numbers increased by 1 in the top row and
by 3 in the bottom row. Addressing each sequence separately may have contributed
to a lack of coordination of the two sequences. Finally, once the students had cre-
ated a new table, they could write the equation I = 3S without forming a ratio for
the slope value. The aforementioned method grew into a standard mathematical
practice for determining slope values from tables of data, and thus continually re-
inforced a focus on differences rather than on ratios.

Focus on ∆y and ∆x as uncoordinated in the slope formula. The teach-

er introduced the
∆
∆

y

x
formula for determining the rate of change of a linear function

on Day 7. She later established the slope formula as ∆y ÷ ∆x when she defined slope
as a constant rate of change on Day 9. On Day 8, students practiced calculating the rate
of change for a linear relation between the number of ounces hung on a spring and its
corresponding length (see Figure 11). To prompt the students to calculate the rate of
change, the teacher asked them to determine how much the spring would stretch if 1
oz were added. Several students called out “10,” which suggests that they once again
attended to the change in y values without considering the change in x values.
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The teacher responded by demonstrating two methods to determine the rate of
change. First she created two uncoordinated sequences, using the method de-
scribed in the previous section of this article. She filled in the whole numbers be-
tween 0 and 5 in the weight column and asked students to fill in the corresponding
spring length values. Second, the teacher reminded the students of the formula for
rate of change from the previous lesson:

Remember the rate of change was the change in length divided by the change in the
weight. The length changed from 10 to 20 by how much? By 10. And the weight
changed from 0 to 5, which is 5. So 10 divided by 5 is 2. So you have two options. If
you guys want to make the table go by 1s instead of 5s, you can do that, and then you
can figure out the numbers here. Another way you can do it is just say, OK if it’s go-
ing up by 10 here [sweeps hand down the column of length values in the table] and
it’s going up by 5 here [sweeps hand down the column of weight values in the table],
then 10 divided by 5 is 2.

By saying “if it’s going up by 10 here” and gesturing down the column of length
values, the teacher directed the students’ attention to a sequence of y values of the
function with a constant difference. She similarly directed their attention to the se-
quence of x values. This may have supported the conception that the change in y
values (or the change in x values) represents a constant difference in a sequence of
uniformly increasing or decreasing values. In contrast, ∆y should represent an in-
terval between any two y values of a linear function and ∆x the interval of corre-
sponding x values.

This approach could help explain Priyani’s behavior in Interview 2 when she
was asked to write an equation for the data in Figure 2. She successfully recited the
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FIGURE 11 Table of data created by the teacher involving a relation between the number of
ounces of weight hung on a spring and the length of the spring.



slope formula, but could not proceed because she did not know “how to find out
what it’s going by.” “What it is going by” appeared to mean the constant difference
in a sequence of uniformly increasing or decreasing values. Therefore, Priyani
could not determine ∆y because the change in y values was not constant. The man-
ner in which the teacher linked ∆x and ∆y to two sequences of uncoordinated x and
y values likely supported this conception.

Furthermore, the instructor stated rather than developed the notion that dividing
∆y by ∆x will produce a ratio of the difference in y values per 1-unit change in x
values. If students do not have sufficient understanding of the meaning of division,
then dividing two differences may not necessarily produce a ratio for the students.
The instructor directed students’ attention to two differences linked by the numeri-
cal operation of division, which may have contributed to a conception that the for-
mula simply adjusts the change in y values, leaving slope a difference rather than
transforming it into a ratio.

Focus on scale of x axis and change in x values when determining slope
from a graph. In the graphing calculator section, we argued that the graphing
calculator and the “goes up by” language supported the conflation of the scale of
the x axis with the change in x values for some students. In this section, we describe
how the instructional environment could have supported the linkage of these two
differences with the slope of a line. On Day 8, students worked in small groups to
calculate the rate of change of each line shown in Figure 12. The teacher directed
students to first create a table of values for each line by using the scale of the x axis
as the change in x values. She may have further contributed to a conflation of the
change in x values with the scale of the x axis by referring to both with the “goes up
by” language:

Be careful. Are they going by 1s down here on this graph [sweeps hand from left to
right along x axis of graph]? What are they counting by on the bottom? By 10s, right?
It’s 0, 10, 20, 30, so the tables on your paper are gonna go by what? By 10s; so be
careful when you’re doing your tables that you go by 10s and not by 1s anymore.

Later in the same lesson, the teacher used similar language to refer to the rate of
change of the line, “If you wanted the rate of change, you want to see how much the
lines are going down by.” The ambiguity of this language could have served as an
additional support for the link between the scale of the x axis, the change in x val-
ues, and the rate of change or slope of a line.

The teacher also regularly drew students’ attention to the x axis through the use
of a visual representation of the change in x values on a graph. She demonstrated
the same method for finding the slope of a line nine times over the course of the
unit. The following example from Day 8 is typical. The teacher demonstrated how
to calculate the slope of line D in Figure 12. She drew points on the line at (10,8)
and (30,4), circled the y value of each point on the y axis, and showed the students
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that the change in y values was 4. She then directed the students’ attention to the x
values by drawing vertical lines from the points to the x axis. The students calcu-
lated the change in the two x values to be 20, and divided 4 by 20 to obtain 0.2 for
the slope. The teacher summarized by explaining that they must always “find two
points, see how much the length changed, and divide that by how much the weight
changed; that’s how you use the graph to come up with the rate of change.”

The instructional treatment of ∆y and ∆x as separate differences again sup-
ported a focus on two uncoordinated quantities. The teacher stated that the length
of the spring “dropped down by” 4 when she calculated ∆y, and explained that 20
was the amount of weight added on when she calculated ∆x. At no time did she ex-
plicitly coordinate these quantities, for example as 4 cm for every 20 kg. Rather
than treating the relation between ∆y and ∆x as a ratio, she treated the two quanti-
ties as uncoordinated differences. This supports the possibility that the slope for-
mula represented two differences for students, linked by the numerical operation
of division, which may simply have resulted in an adjusted difference rather than a
ratio. Without a firm association between slope and, in this case, a ratio as a com-
posite unit of length and weight quantities, students may have treated the quantities
as isolated and thus might be likely to remember only one of the quantities when
calculating slope.
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FIGURE 12 Visual representation used by the teacher to calculate the slope of a line. From
Contemporary Mathematics in Context, Course 1 Part A (p. 185), by A. F. Coxford, J. T. Fey,
C. R. Hirsch, H. L. Schoen, G. Burrill, E. W. Hart, et al., 1998, Chicago, IL: Everyday Learning
Corporation. Copyright 1998 by The McGraw-Hill Companies. Reprinted with permission.



Furthermore if ∆x was conflated with the scale of the x axis, it is plausible that
the scale of the x axis became associated with slope for some students. The
teacher’s method of drawing vertical lines to the x axis may have directed students’
attention to the x axis during the calculation of the change in x values, further link-
ing the x axis scale with the change in x values. In fact, in the earlier example, the
change in x values was the same as the numerical scale along the x axis. Finally, on
Day 9, the teacher summarized the method for calculating the slope of a line by
placing the symbol ∆x along the x axis, as shown in Figure 13. Therefore, the slope

formula
∆
∆

y

x
could have become linked to the scale of the x axis for those students

who thought that ∆x was the scale of the x axis.

DISCUSSION

The results of this study demonstrate that the students formed an understanding of
slope on the basis of single quantities changing and generalized that understanding
to novel situations. More important, the students’ generalizations appeared to be
linked to four focusing phenomena, which regularly directed their attention to vari-
ous sets of differences. We conjecture that by altering the nature of the focusing
phenomena in a classroom, we can significantly affect the nature of students’ gen-
eralizations. Specifically, if one regularly directs students’ attention to the coordi-
nation of covarying quantities, then students are more likely to generalize slope as
a ratio. This curricular recommendation emerges from the theoretical connection
between the processes of abstracting and generalizing and from the empirical find-
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FIGURE 13 Visual display used by the teacher to show a general method for finding the
slope of a line.



ings of this study. Both the theory and the data suggest that by changing the nature
of the focusing phenomena, we can change the nature of students’ generalizations.
We do not mean to suggest that redirecting students’ attention will result in the au-
tomatic or straightforward formation of correct conceptions. Furthermore, the con-
struction of focusing phenomena is not completely under the teacher’s control but
involves listening to and guiding students while they develop, test, and revise their
own ways of thinking. The process of altering focusing phenomena is complex and
involves at least four interrelated issues, which we discuss next.

Changing the Object of Focus

We need to do more than simply replace the focusing phenomena documented in
this article with new ones; we need to first change the object of focus. Specifically,
the object of focus must shift from the production of a slope value to the develop-
ment of slope as a conceptual entity. Two ways to mentally form a ratio—as a
multiplicative comparison or as a composite unit—were described previously in
the Conceptual Analysis of Slope section of this article. Consequently, we can
evaluate potential instructional alternatives by examining whether the mental for-
mation of ratio is likely to be supported. We consider two examples.

First, the use of the “goes up by” language is arguably the most prominent fea-
ture of the instructional environment reported here. Therefore, an attractive way to
address the problem that occurred in this classroom is to replace the ambiguous
language with more formal mathematical language. However, if the language of m
as (y2 – y1) ÷ (x2 – x1) or even m as “rise divided by run” is linked with uncoordi-
nated sequences or uncoordinated differences, then similar problems are likely to
arise as those reported in this article. Therefore, language use alone is unlikely to
fully address these concerns. One difficulty with the “goes up by” language was
that it allowed speakers to have different referents and thus to talk past each other.
Whereas the language of coordinate pairs in (y2 – y1) ÷ (x2 – x1) may be less ambig-
uous, it may also lack a referent for students and represent nothing more than a
computational recipe. In fact, research has documented that students in classrooms
that use more formal language still have difficulty thinking of slope as a ratio (Barr,
1981; Leinhardt, Zaslavsky, & Stein, 1990; Lobato, 1996, 2002).

Second, one might advocate replacing the focusing phenomenon of uncoordi-
nated sequences by drawing students’attention across rows in a table with the ques-
tion, “Whatdoyouneed tomultiplyxby togety?”;orwhen they intercept isnotzero,
“What is the rule that gets you from the x value to the y value?” Although this may be
moreeffective indrawingstudents’attention to the relationbetweencorrespondingx
and y values, we believe this is insufficient to support the development of slope as ra-
tio formanystudentsdue to thecalculationalnatureof theprobe. Inparticular, the in-
structional question does not necessarily draw attention to the quantities in the situa-
tion. For example, developing the enlargement factor as a conceptual entity in the
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overhead projector activity (see Figure 10) involves mentally asking how much
larger is the length of each projected image than the length of the sketch. Because it is
reasonable to compare a sketch length with its projected image length either
additively or multiplicatively, it is nontrivial for students to realize that only the
multiplicative comparison will hold for all sketch lengths. Simply asking students
what number can be multiplied by x values to obtain y values fails to adequately con-
nect the numerical values to the quantities they represent and does not allow students
to consider whether an additive comparison between quantities may also hold.

Problematizing the Formation of Ratios

Students need to encounter problem situations that necessitate or problematize the
mental formation of a ratio. This did not occur in Ms. R’s classroom, because it
was possible to negotiate the tasks by operating with differences only. Brousseau
(1997) described the Topaze Effect in which teachers attempt to achieve the opti-
mum meaning for the greatest number of students by choosing easier and easier
questions. If the target knowledge disappears completely, the Topaze Effect oc-
curs. This also occurs when problem tasks are chosen such that students are de-
prived of the opportunity to develop, test, and revise the target knowledge. Because
the text did not present data in tables in which the independent variable occurs in
nonuniform intervals, the students never needed to build an understanding of slope
as a ratio between the change in y values and the corresponding change in x values.
Students lacked the opportunity to examine whether situations are linear even if
the data occur in nonuniform intervals. Problematizing requires the creation of
tasks that present a need for students to develop the target knowledge. It is compat-
ible with Harel’s (2001) Necessity Principle, which asserts that students are most
likely to learn if they see an intellectual need for what we intend to teach them.

A task that might problematize the formation of ratio is the leaky faucet situation
(shown in Figure 2) along with the question, “Is the faucet leaking faster at times, or
is it leaking steadily the entire time?”2 The solution to this problem necessitates the
coordination of two covarying quantities. Because the data are presented in nonuni-
form time intervals, the students can no longer attend solely to differences. To an-
swer the question, students need to explore the dependency relation between y and x,
andtodetermine linearitybasedonaratio remainingconstant throughout thedata.

Alternative Focusing Phenomena

As shown in the Results section, focusing phenomena emerge not only through the
instructor’s behavior but also through students’behavior, curricular materials, arti-
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facts such as graphing calculators, and shared mathematical language. Focusing
phenomena are dynamic co-constructions and as such can not be scripted in ad-
vance. Therefore, the following five potential focusing phenomena are not fully
specified but rather are presented to convey the spirit of how students’ attention
could be directed toward the coordination of covarying quantities:

1. Collect and display data to support exploration of relations between quanti-
ties (not just number patterns). The instructional environment documented in this
study directed students’attention away from cause-and-effect relations and toward
iterative “goes up by” numerical patterns by compiling data in well-ordered tables,
using only y values to make predictions, using the “goes up by” language to ambig-
uously refer to both a ratio and a difference, and failing to problematize the explo-
ration of cause–effect relations. The cause–effect nature of linear relations is not
inherent in real-world situations but requires focus and attention. One way to focus
attention on the coordination of quantities is to provide or collect data so that there
are not uniform intervals between successive values of the independent variable.
For example, using the spring setting from CPMP (see Figure 11), the teacher
could present weights such as 5 g, 17 g, 20 g, and 28 g, and challenge students to
experiment to determine if there is a relation between the stretch of the spring and
the amount of weight hung on the spring. Using the results of experimentation to
predict and then test the stretch of the spring for various weights could further fo-
cus attention on the cause–effect relation between quantities.

2. Use the language of quantities. The “goes up by” language is a language of
recursive number patterns. In contrast, the language of quantities and units can fo-
cus attention on ratios. Teachers should insist that any time students speak of a
number within a real-world situation, they speak of the quantity for which the
number is a value. Furthermore, when students use an arithmetic operation, they
should name the quantities on which they are operating, the quantity their calcula-
tion evaluates, and what the operation accomplishes in the situation. For example,
in the bed springs example (Figure 12), students were asked to write an equation
for Line D. Students should be expected to explain that (0,10) indicates that the bed
spring is 10 cm long when there is no weight on the bed. They should also under-
stand that the b value in y = b + mx represents the value of y (which is the length of
the spring) when x (which is the weight placed on the bed) is zero. The point (10,8)
indicates that the bed spring compresses until it is only 8 cm high when a 10 kg
weight is placed on the bed. These two points could be used to determine that the
spring compresses 2 cm for each 10 kg weight that is placed on the bed. By finding
2 ÷ 10, one determines the length that the spring is compressed when a 1 kg weight
is placed on the bed. Therefore, the slope value of 0.2 cm per kilogram represents a
measure of the stiffness of the spring.

3. Use “sameness” activities to form coordinated pairs. The repeated attention
on uncoordinated sequences apparently led some students to generate an under-
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standing of slope as a difference. The following type of activity can be used to help
students form coordinated pairs of x and y values and generate an understanding of
slope as a representative member of an equivalence class of ratios. One could ask
students to consider that 4 oz of water were collected after 10 min from a leaky fau-
cet. If the faucet continues to drip at the same speed, what other data might be rea-
sonable to collect? The use of pictures and explanations can play an important role
in shifting the focus toward reasoning quantitatively with ratios. For example, a
student might draw a picture showing 4 oz in a cup with 10 min written next to it
and reason that if another 10 min passes, then 4 more ounces should drip because
the speed of dripping has not changed. Therefore, the data point of 8 oz in 20 min
represents the same dripping speed. An equivalence class of ratios, each represent-
ing the same dripping speed, can be developed by using a composite unit ratio of 4
oz:10 min in conjunction with iterating, partitioning, and the idea that a/b of 4
oz:10 min represents the same speed of dripping as a/b of 4 oz in a/b of 10 min.
Any member of the equivalence class can represent the entire class and is the slope
of the function. These types of explanations preserve reasoning with quantities and
form the foundation for conceiving of slope as a measure of the dripping speed.

4. Relate the numerical operation of division to mental operations on ratios.
This article reports that division was treated as a numeric operation linking two un-
coordinated differences. In contrast, division could be connected with mental op-
erations on ratios. For example, in the leaky faucet situation described in Item 3,
the teacher could ask students to draw a picture to show how much water is in the
container after 1 min of dripping. Students could partition the ratio 4 oz:10 min
into 10 equal parts, each representing 0.4 oz in 1 min. The operation of partitioning
could then be meaningfully connected with the numeric operation of division to
help students understand that the resulting quotient is a ratio of ounces per minute.

5. Delay the use of graphing calculators. We believe that the students who partic-
ipated in this study may have benefitted from learning to coordinate two quantities
and tocreatea ratiodescribinghowonequantitychanged in relation to theotherprior
to naming the ratio as slope and prior to representing slope with a graph or equation.
Weaccept theargument that the relationbetween learningandsymbolizing is reflex-
ive and that students may develop an understanding of ratio while they develop an
understanding of the Cartesian coordinate system (Sfard, 2000). However, students
operating at unsophisticated levels of proportional reasoning might benefit from de-
veloping an understanding of the linear functions in real-world settings and from us-
ing theirowndiagramsandsymbols to represent the ratesofchangeprior to the intro-
duction of the conventional representations of graphs and equations.

Beyond Slope

Focusing phenomena provide a powerful way to establish connections between
students’ generalizations about slope and the instructional environment. Although
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there are additional factors involved in the interplay between students’ generaliza-
tions and the instructional environment, such as students’ prior knowledge, the ex-
amination of focusing phenomena in this study offers at least one plausible expla-
nation for the students’ generalizations. One could similarly examine the focusing
phenomena that afforded students’ generalizations regarding the y intercept in y =
� ± �x. Focusing phenomena can also be leveraged to provide alternative instruc-
tional ideas to teachers and designers of instructional materials. Finally, focusing
phenomena may be widely useful in the establishment of links between specific
features of instruction and students’ generalizations for many other mathematical
topics. Therefore, this article is relevant beyond the teaching and learning of slope.
It emphasizes the need to pay greater attention to the specific ways in which teach-
ers, instructional materials, and artifacts direct students’ attention when learning
any new topic.
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