
Generalizing-Promoting Actions:  
How Classroom Collaborations  

Can Support Students’
Mathematical Generalizations

Amy B. Ellis
University of Wisconsin-Madison

Generalization is a critical component of mathematical activity and has garnered 
increased attention in school mathematics at all levels. This study documents the 
multiple interrelated processes that support productive generalizing in classroom 
settings. By studying the situated actions of 6 middle school students and their 

be represented by y = ax2, the study identified 7 major categories of generalizing-
promoting actions. These actions represent how teachers and students can act in inter-
action with other agents to foster students’ generalizing activities. Two classroom 
episodes are presented that identify cyclical interaction processes that promoted the 
development and refinement of generalizations. The results highlight generalization 
as a dynamic, socially situated process that can evolve through collaborative acts.
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Generalizing is widely acknowledged to be a critical component of mathematical 
-

makers arguing that students should learn to generalize in all areas of mathematics 

has enjoyed increased prominence particularly in algebra classrooms, in which calls 
for reform state the need to develop algebraic reasoning in terms of generalizing 

students make generalizations about properties of numbers or operations, they 
make explicit their mathematical thinking. Generalizations provide a class with 
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responded to this emphasis by producing curricula aimed at promoting generalizing 

2002), and a number of recent studies have focused on supporting students’ gener-

Despite the importance of generalization to mathematical and algebraic 
reasoning, its processes are not well understood. Studies have demonstrated 

1996). Research examining students’ generalizing practices in algebra settings has 
further identified a number of challenges: Students struggle to generalize patterns 

1989), they focus on covariational patterns more readily than the correspondence 
relationships that allow generalizing the n

experience difficulty shifting from recognizing patterns to generalizing them 
-

ties with generalizing have been well documented, additional research on how to 
promote successful generalizing in classroom settings is needed in order to better 

It is often the case that teachers, curriculum designers, and textbook authors fail to 
recognize that general mathematical patterns are not directly perceptible. Mathematics 
students do not unproblematically see general patterns through exposure to or experi-
ence with multiple, similar cases. Rather, they need to orient to and be guided to 

Researchers have identified a number of social and pedagogical influences on 

students engaged with a generalization problem. They found that working with an 
open-ended problem with many entry points, having opportunities to visualize a 
concrete representation of the problem situation, and being able to work collab-
oratively fostered the students’ generalization processes. Furthermore, the teacher’s 
discursive actions of pushing for algebraic generalizations without supplying 
strategies or answers appeared to promote productive generalizing. Research on 
teachers’ pedagogical strategies more generally has identified a number of poten-
tially productive actions for fostering generalization, including highlighting the 
role of conjecture and justification in classroom discussion, providing access to 
physical or visual representations of mathematical relationships, revoicing to 
elaborate or refine student contributions, and encouraging reflection on students’ 
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notions of linking and conjecturing as two participation frameworks that supported 
students’ generalizing in small-group interaction.

Students can be adept at making all kinds of generalizations, but this does not 
mean that they will be able to generalize in ways that are productive in terms of 
being mathematically useful, or helpful in achieving the mathematical goals of a 

Documenting the specific processes that support productive generalizing is an 
important step toward understanding how to help students generalize in classroom 
settings and in understanding the actions in which teachers can engage to foster 
those generalizations. The study reported in this paper examines how actions and 
interactions can work in concert with one another to promote generalizing. Moving 
beyond an exclusive focus on the teacher’s pedagogical moves, this study also 
addresses the types of student actions and interactions that can foster generalizing. 
This article highlights generalizing as a dynamic process that can evolve through 
interaction, and it presents two interaction cycles in which particular types of 
student and teacher acts fostered the development and refinement of new general-
izations.

GENERALIZING AS A SITUATED PHENOMENON

Researchers historically have approached the notion of generalizing from a 

-

types of generalizing, either by categorizing types of generalizing activities 

Stacey, 1989) or by developing constructs delineating multiple levels of general-

body of research as a whole, these distinctions attend to many dimensions. They 
account for generalizing as a static model of applying prior knowledge versus 

-

cases into a general concept versus developing a general concept from particular 

levels of generalization offer descriptions of students’ strategies as they engage 

These frameworks share a common theme in that generalization is largely viewed 
as an individual, cognitive construct. This perspective has proved useful in distin-
guishing types of generalizations, describing levels of generalization as students 
progress mathematically, and identifying students’ competencies and difficulties 
with generalizing. At the same time, an increasing number of researchers have 
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examined generalizing as a collective act, distributed across multiple agents set in 

2003). This perspective attends to how social interactions, tools, personal history, 
and environments shape people’s generalizing actions, conceiving of generalizing 

is within this tradition that I define generalizing as an activity in which people in 

Throughout this article I will use generalizing to refer to any of these three 
processes or actions, whereas generalization will refer to the product or outcome 
of these actions.

The current reform movement in mathematics education places considerable 
emphasis on the role that classroom discourse can play in supporting students’ 

for research that attends to how learners develop understanding by means of 

learning as a social process that occurs in the interaction among classroom 

interactively produce certain regularities and norms of speaking and acting math-
ematically. Thus, we understand the development of mathematizing in the class-

interactionist perspective, this study focuses on the interactions that occur within 
the microculture of a classroom, with the negotiations that occur during interac-
tions viewed as mediating between cognition and culture.

This study considers classroom situations through the lens of multiple 
processes of interactions, in which the students and the teacher co-contribute to 
the development of meaning through their talk, shared activity, and engagement 
with artifacts. The interactionist perspective privileges both teacher–student 
interaction and student–student interaction, which allows researchers to take into 
account how teachers and students develop shared ways of interacting in ways 
that support generalizing. The focus of study is therefore on the interactions 

an objective, universal process but depends strongly on context, on the history of 

perspective, the interactionist stance mediates between individualism and collec-
tivism by focusing simultaneously on the dynamics of classroom situations and 

from the study individual construction of meaning; instead, it situates that 
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METHOD

Setting and Participants

student). The students’ teachers identified them as either high, medium, or low 
based on their assigned mathematics class, as well as on their mathematics grades, 
attendance, and participation in class. The group of 6 participants was selected in 
order to produce a group of mixed backgrounds. It contained 2 students identified 
as high, 2 identified as medium, and 2 identified as low. There were 3 girls and 3 
boys; 1 student was Indian American, 2 students were Asian American, and 3 
students were Caucasian. One student was an English language learner. Gender-
preserving pseudonyms were used for all participants.

The Teaching Experiment

that follow), and two project members familiar with the teaching-experiment meth-
odology and the goals of the project observed each teaching session. Each teaching 
session lasted 1 hour, and each student also participated in an hour-long preinter-
view and postinterview. The project members operated two video cameras during 
the teaching sessions to capture both the whole-group discussions and the small-
group interactions for all the teaching-experiment sessions. The project team met 
every day after the teaching-experiment session in order to debrief and informally 
discuss what had occurred during the session. An undergraduate student transcribed 
all the videotaped data using the Transana software program.

One of the goals of the teaching experiment was to examine the factors promoting 
students’ generalizing in the context of exploring situations about a particular type 

area of rectangles that grow proportionally by maintaining the same height-to-
length ratio as they grow. The relationship between height, x, and area, y, can be 
expressed as y = ax2

relationships of the form y = ax2 + bx + c, with a  0. Students worked with 
computer simulations of growing rectangles in The Geometer’s Sketchpad, drew 
their own rectangles, and justified their generalizations about the nature of the 

comparing the heights and areas of rectangles and developed multiple generaliza-
tions about the constant second differences in their tables. This approach follows 

-
ties and their relationships should be the basis of algebraic reasoning. However, 

numbers and progressed from the specific to the general.
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Thompson, 1994) was to gain direct experience with students’ mathematical 
reasoning through the construction and continual revision of hypothetical learning 

and testing of hypotheses in real time while engaging in teaching actions, which 
means that the mathematical topics for the entire set of sessions were not predeter-
mined but instead were created and revised on a daily basis in response to hypoth-
esized models about the students’ mathematics. Figure 1 provides a brief overview 
of the topics addressed in the teaching experiment.

Day Mathematical topics Day Mathematical topics

1 Measurement and area 9 Justifying the second differ-
ences as 2a

2 Comparing perimeter and area 10 Identifying second differences 
for tables with different h 
values

3 Identifying first and second 
differences in tables

11
and graphs

4 Connecting first and second 
differences to area

12 Graphing parabolas

Identifying height:length ratios 
and creating y = ax2

13 Graphing first and second 
differences

6 Creating generalizations about 
second differences

14 Creating y = ax2 + c
and graphs

7 Justifying generalizations 
about second differences

Summarizing generalizations

8 Creating y = ax2

from tables and identifying the 
second difference as 2a

Figure 1. Overview of the teaching-experiment sessions.

Data Analysis

-

the video recordings themselves, which allowed the project team to consider mainly 
the participants’ talk, but also their gestures, intonations, and their use of artifacts, 
drawings, and physical objects. Methods consistent with interactionism involve 
detailed description and interpretation of transcripts, which are analyzed as docu-
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analyzed to identify instances of generalizing as they fit the previously stated 

particular cases. Once all instances of generalizing were identified, the transcripts 
were then coded via open coding in order to develop preliminary codes describing 
the talk and actions that preceded and appeared to prompt the generalizations. 

ideas or strategies introduced by an action and a generalization that followed it. The 
project team1 met to argue any boundary cases or uncertain instances, and these 
cases were ultimately decided through a return to the videotaped data to track the 
proposed chain of actions. Although it is impossible to definitively identify an 
action as causing a generalization, these criteria provided a basis for making deci-
sions about borderline cases.

In the second round of analysis, referred to as axial coding
codes were related to one another in order to identify a set of causal relationships. 
Coding was aimed at describing the conceptual relationships between the categories 
of interactions and the students’ generalizing activities, identifying how particular 
types of interactions may have promoted students’ generalizing. For instance, one 
of the codes described in the section below is revoicing, in which a teacher or a 
student restates another member’s generalization in order to elaborate or revise it. 
Revoicing was considered in relationship to all the generalizing actions that 
succeeded it in order to hypothesize ways in which the particular act of revoicing 
appears to foster generalizing. Through considering these relationships, hypotheses 

existing generalizations, supporting the development of more explicit or better-
defined statements).

As the codes began to stabilize, the data were revisited to begin to approach 
-

duced the same categories that had been developed, rather than resulting in the 
development of new categories or an adjustment of existing categories. The project 
team met to engage in sample coding of data excerpts until no new properties or 
relationships emerged from recoding the data. Once the codes were organized into 
major categories, a final round of analysis occurred in which the transcripts were 
revisited in order to find all instances of the actions that were coded as fostering 
generalizing, regardless of whether the action prompted a generalizing activity. To 

1Aside  from  the  author,  the  project  team’s  role  was  limited  to  assistance  in  the  sense  that  (a)  they  vid-

were  not  used  as  data),  (c)  the  author  would  bring  uncertain  coding  cases  to  the  weekly  project  meet-
ing,  and  the  team  would  discuss  the  cases  and  return  to  the  data  to  make  a  joint  decision,  and  (d)  they  
helped  with  approaching  saturation  in  project  meetings,  using  the  coding  scheme  for  new  data  pieces.  
The  author  created  and  revised  the  codes  but  discussed  some  aspects  of  them  with  the  project  team.
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contents of verbal utter-

two units of analysis: the generalizing-promoting actions and the generalizations 
themselves. Each generalizing-promoting action was identified and then tracked 
in relationship to the number of times it was connected to a generalization or an act 
of generalizing. Those comparisons are presented in the Results section.

Consistent with the recent approaches of other researchers investigating 

generalizing-promoting actions do not distinguish between the teacher–researcher’s 
utterances and the students’ utterances. This is consistent with the study’s use of 
the interactionist frame, in which the classroom microculture is brought forth 

episodes are construed as processes of interaction, in which both the students and 
the teacher–researcher contribute to a shared understanding. Each of the codes 
represents an action that occurs within the framework of interacting with other 
members of the classroom community, regardless of who originated the action.

RESULTS

The results are presented in two sections. The first section introduces categories 
of generalizing-promoting actions and provides brief excerpts defining and exem-
plifying each of the actions. The second section identifies and describes in-depth 
processes of interaction that promoted the development and refinement of gener-
alizations. That section presents two extended excerpts in which the students 
created and adjusted their generalizations through interaction.

Part I: Categories of Generalizing-Promoting Actions

Seven categories of actions emerged from the analysis. Each category describes 
a type of action or talk that preceded and appeared to foster the development or 
refinement of a generalization. The 402 action codes are not limited to teacher 
moves, but instead represent the ways that teachers, students, problems, and arti-
facts can act in interaction with other agents to promote students’ generalizing 
activities. The leftmost column in Figure 2 describes the major categories of actions, 
and the two rightmost columns report the number of instances in which each action 

mutually exclusive, and some actions could be coded in more than one category. 
In those cases, the actions were coded in a primary category according to the 
researcher’s perception of the actor’s intention and the manner in which the other 
members of the classroom community responded to the action.

A note about the mathematics. The students participating in the teaching experi-
ment examined the relationships between the lengths, heights, and areas of rectangles 
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Generalizing-Promoting Action No

Publicly Generalizing: 
A member of the classroom community publicly engages in general-
izing. This may take the form of—

situations, or representations;

at hand.

4

Encouraging 
Generalizing:
Encouraging 
others to 
engage in 
generalizing

Encouraging Relating: Prompting the formation of an 
association between two or more entities

26 12

Encouraging Searching: Prompting the search for a 
pattern or relationship

14 2

Encouraging Extending: Prompting the expansion 
beyond the case at hand

18 2

Encouraging Reflection: Prompting the creation of a 
verbal or algebraic description of a pattern or rule

3

Encouraging Sharing of a Generalization or Idea: 
Asking or encouraging another member to publicly share a generaliza-
tion, representation, solution, or idea. This may occur in the form of 

19 0

Publicly Sharing a Generalization or Idea: 
Sharing another member’s generalization, idea, strategy, or represen-
tation with the larger classroom community. This may take the form of 

-
dating or rejecting another member’s generalization.

Encouraging Justification or Clarification: 
Encouraging a member to reflect more deeply on a generalization or 
an idea by requesting an explanation or a justification. This may 
include asking members to clarify a generalization, describe its origins, 
or explain why it makes sense.

67

Building on an Idea or a Generalization: 
Building on another member’s idea, conclusion, or generalization. 
Building actions can take the form of refining an idea or using it to 
create a new idea, rule, or representation.

14 1

Focusing Attention on Mathematical Relationships: 
Directing attention to particular aspects of a problem or representa-
tion. A member may direct others’ attention to specific mathematical 
features of a problem or activity.

31 14

Figure 2. Summary of generalizing-promoting actions and connections to generalizations.
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that grew while maintaining their length/height ratios. They worked with a script in 
The Geometer’s Sketchpad to explore what happened to the dimensions of a particular 

allowed the students to expand the rectangle by dragging a point, and the program 
allowed the students to measure the height, length, and area of the rectangle at any 
given size. The students created their own tables of data to represent the phenomena 
they observed. An example of one student’s data table is given in Figure 3.

Figure 3. Student’s table of data representing a growing rectangle 
W/L, here).

Because the second differences in the students’ well-ordered tables2 were 
constant, the students focused their attention on these differences and attempted to 
make sense of their origins in relationship to the rectangles they studied. They called 

2By  well-ordered tables,  I  refer  to  tables  in  which  the  x-values  (values  of  independent  variables)  
increase  by  a  uniform  amount,  such  as  1  cm  or  5  cm.  
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the first differences the rate of growth

increases in the length.) The students called the second differences the difference 
in the rate of growth

interested in predicting what the DiRoG would be for different types of tables, they 
also attended to how the entries in the tables were ordered. In some tables, the height 

tables introduced by the teacher–researcher in which the heights and lengths did 

In order to focus attention on these increments, the students used the terms differ-
ence in the height, which they called DiH, and difference in the length, which they 
called DiL.

Publicly generalizing. Publicly generalizing refers to instances in which members 
of the classroom community engage in the process of generalizing in a public 
manner, by sharing ideas and results with others or by generalizing aloud in a 
collaborative manner. Publicly generalizing can take a number of forms, depending 
on the type of generalizing in which students engage. For instance, one student, 

DiL/DiH = a, after he wrote it on 
DiL/DiH = a the same thing as mine, as the 

DiRoG a 3 By engaging in the generalizing action of relating
-

-
DiRoG DiL over DiH

In a different type of public generalizing, Jim hypothesized a general way to find 

Jim:   Well, finding the difference in the rate of growth, you can pretty much go from the 
difference in the rate of growth backwards to find out what you want to know. Like 
you can find out any table by going from the difference in the rate of growth back-
wards. So like, let’s say, your difference in rate of growth is 7, you can go back with 
two numbers like, you know, 7 and 14 or whatever. And you can go back . . . you 
know, keep going back until you find the original table. For any table you want.

Jim appeared to describe a potential way to determine the values in a height/area 
table given knowledge of the DiRoG. Jim may have been hypothesizing that 
because one can calculate the DiRoG directly from the area values in a well-ordered 

3The  two  equations  are  equivalent  only  when  the  DiRoG  is  calculated  from  a   table   in  which   the  
height  values  increase  by  1;;  see  the  Appendix  for  a  more  in-depth  discussion  of  the  accuracy  of  these  
generalizations.
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height or length values, given the DiRoG. Bianca objected to Jim’s method, and in 

Bianca

L W, so it’d 
be like L W L W L W. So this is just the next 

Bianca did not believe Jim’s hypothesis that one could derive the values in any 
table given the DiRoG. In reacting to Jim’s public generalizing, Bianca described 

her own generalization.

Encouraging generalizing. Encouraging generalizing refers to actions in which 
a member of the community directly encourages a generalizing action on the part 
of another community member. One can encourage generalizing in a number of 

engage in different types of generalizing actions by relating, searching, and 
extending, respectively. Encouraging generalizing was not limited to the teacher–
researcher’s actions. Students also engaged in encouraging; for instance, when Jim 
and Tai worked together on a problem, Tai attempted to develop a pattern and Jim 

One particularly powerful form of encouraging generalizing occurred when a 
member of the classroom community or a problem context prompted students to 
predict the outcome of an experiment or a hypothesis. For example, when discussing 
a particular rectangle, the teacher–researcher asked the students to make a predic-
tion about what would happen to the area if one changed the table of values such 
that the length and the width increased by 1 cm. Ally engaged in the generalizing 

length and the width each increased by 1 centimeter.

Encouraging sharing of a generalization or idea. Encouraging sharing of a 

broadly with the community as a whole. This served to shift a generalization or 
strategy from the private arena to the public arena so that other members of the 
community could consider, react to, and build on it. For instance, Daeshim worked 

y = x2). He 
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engaged in the generalizing action of searching for a pattern by calculating the first 
and second differences between successive area values, finding that the second 

2 each time the height and length each grew by 1 
cm. The teacher–researcher asked the students to draw a picture showing these 
differences, and Daeshim created the drawing shown in Figure 4. The teacher–
researcher then asked him to share his drawing with the rest of the group. Daeshim 
placed on the board the drawing in Figure 4. As he wrote, Daeshim explained to 

’

!

added to it to make the 4 !

!

to a 4 ! ! !

on Daeshim’s drawing, Bianca used the figure to come up with a new idea:

Bianca

Figure 4
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increasing it by height and then added to the 1 you’re increasing by width is the 2. 

Bianca previously had developed a similar drawing showing the first and second 

be 2 cm2. However, Bianca had identified the DiRoG to be two specific

top left corner. Although it is not possible to infer Bianca’s thinking with certainty, 

her to realize that the 2 cm2

used Daeshim’s drawing to show that the DiRoG could be conceptualized as any 

each increase by 1 cm. This was a generalization that Bianca had not previously 
identified before considering Daeshim’s drawing.

Publicly sharing a generalization or idea. Actions coded as publicly sharing 
involve directly shifting a generalization, drawing, strategy, or idea to the public 

1998) or publicly validating or rejecting another member’s generalization. For 
instance, the teacher–researcher revoiced 2 students’ generalizations when she said, 

a generalization similar to Daeshim’s at a different time during the session.) The 

researcher.
Members of the classroom also would publicly acknowledge a student’s gener-

alization as either correct or incorrect, thus drawing attention to it. There were times 
when a student rejected his or her classmate’s generalization as incorrect, and in 
these cases his or her peers would respond by adjusting the generalization or 
creating a new one. Members of the classroom also publicly validated generaliza-
tions. For instance, in the dialogue that follows, the teacher–researcher validated a 
generalization, and the students responded by continuing the line of thought and 
creating more generalizations:

Sarah
Tai
Tai
TR
Sarah: I’m right?
TR: And that works for cubed, it works,
Sarah: It works for the hundredth power?
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In response to the public validation, Sarah engaged in the generalizing action of 

with the generalization that cubic functions would have constant third differences, 
n th-degree functions 

would have constant n th differences.

Encouraging justification or clarification. Encouraging justification or clarifi-

a generalization. These actions encourage reflecting on the generalization or solu-
tion at hand, and these reflections can initiate examination of the general nature 
of the properties and relationships being discussed. For instance, the teacher–
researcher’s statements were coded as encouraging justification or clarification 

A participant may also ask another classroom member to explain how he or she 
came up with a particular result. This type of action was carried out most 

h h
illustrates the ways in which the students’ encouraging justification or clarification 
actions prompted a number of generalizing actions such as creating general rules, 
extending beyond the case at hand, and the development of general patterns.

The following excerpt exemplifies how a prompt to clarify resulted in the 
creation of a new generalization. The students worked with a 4 !
that grew proportionally by maintaining its height/length ratio and were trying to 
determine what the DiRoG would be for a table in which the height increased by 

can be represented by y x2, in which x is the height of the rectangle and y 
y = ax2 in 

which the height increases each time by 1 unit will be 2a 2 

asked Jim for clarification:

Ally  
Encouraging Clarification)

Bianca: I did 4, 
Ally
Bianca
Ally: Times width, times . . . height over width times what?
Bianca: Height over length times 2. So I guess it’s like, you just do 2H over L.

together before the group discussed their ideas as a whole and had developed a 
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strategy for determining the DiRoG. She found the ratio of the rectangle’s sides 
by reducing the height to 1 unit and finding the corresponding length. For 
instance, for any given rectangle with height H and length L, Bianca would create 
a fraction H/L H-value of 1. She 
would then take the denominator, L, and double it to find the DiRoG. Bianca 

H was 1 and 
H was 2 and take 

the denominator value as the DiRoG. So for this problem, Bianca took the height/

the DiRoG.

numbers, but Ally interjected by asking Bianca to describe her strategy more 

-
ment may have been a way to describe her strategy of reducing the H/L fraction 
until H = 1, and then multiplying the denominator, L, by 2. Bianca then may have 

H over L
H over L

reducing the fraction until H = 2, and then taking the corresponding L-value as 
the DiRoG. In expressing her strategy this way, Bianca engaged in the generalizing 
action of extending her strategy to a general H by L rectangle. The students later 
created an alternate form of this generalization that the ratio of twice the length 
to the height of a rectangle will produce the second differences value.4

Building on an idea or a generalization. This action refers to instances in which 
a member of the community builds on another member’s idea or conclusion. This 
can occur in a number of ways, including using another person’s idea to create a 
new relationship or generalization, revising another member’s strategy or gener-
alization, or creating an artifact or problem statement in response to a member’s 
idea, strategy, or generalization. It can also take the form of an extended period of 
argumentation between multiple students, who collaboratively reflect upon and 
refine a series of generalizations, as seen in Part II. However, teacher actions, 
including the development of new problems, can also either prompt building or 
engage in a form of building. For instance, consider the drawing that Daeshim 

emerged from a problem the teacher–researcher wrote that referenced a student’s 

student’s prior creation to propose a new series of tasks, namely, drawing the 

4Bianca’s  generalization  and  the  alternate  form  2L/H  is  correct  for  height/length/area  tables  in  which  
the  height  values  increase  by  1,  but  it  is  not  true  for  tables  in  which  the  constant  increase  is  not  1  (see  
the  Appendix).
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Focusing attention on mathematical relationships. Focusing involves encouraging 
members to attend to a specific mathematical feature of a problem, idea, or represen-
tation. The most common type of focusing took the form of the teacher–researcher 

in the problem situation. For instance, after the students began developing generaliza-
tions about how to find the second differences from a table of values, the teacher–
researcher focused the students’ attention back on the original rectangle scenario, 

height, you made a table to compare the length/height and the area. Here 
is what one student’s table looked like:

Length/height  Area

 3  9

 4  16

 5  25

 6  36

 7  49

 8  64

 9  81

+ 2

+ 2

+ 2

+ 2

+ 2

+ 7
+9
+11

+17
+15
+13

!

!

!

!

1. Show where the +7, +9, +11, +13, etc. is in your drawings.

2. Show where the +2 will be in your drawings.

Figure 5. Problem building on a student’s previously constructed table.
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Part II: Interaction Cycles

The analysis revealed patterns of students creating and refining their generaliza-
tions through cyclical interactions, in which each round of generalizing prompted 
the development of new generalizations. This section presents two episodes that 
demonstrate the manner in which the students and the teacher–researcher together 
engaged in generalizing-promoting actions and then built on one another’s ideas to 
develop more refined generalizations over time. Both episodes demonstrate actions 

-

generalizing.
The first episode highlights student–student interactions, in which the students 

worked together in a small group without the teacher–researcher’s immediate inter-
vention. The students’ actions encouraged justification or clarification by focusing 
on the origins of one another’s generalizations, and the students also repeatedly 
engaged in building actions as they responded to one another’s ideas. The second 
episode highlights the teacher–researcher’s actions. In this episode, the teacher–
researcher also emphasized actions that encouraged justification or clarification, 
but she focused primarily on prompting students to explain why their generalizations 
and strategies made sense. These acts, in combination with publicly sharing students’ 
generalizations, encouraged the students to publicly generalize, creating statements 
that the students could reflect on, build on, and refine. Taken together, the episodes 
demonstrate how both teachers and students can contribute to the development of 
positive interaction cycles that promote extended generalizing.

Excerpt 1: Developing an equation to find the DiRoG. On the 9th day of the 
teaching experiment, the students worked with the table in Figure 6, detailing the 

a rectangle that is growing in proportion:

Height Area

10 300

20 1,200

74.2 ?

Figure 6. Table of height and area values for a proportionally growing rectangle.
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table is A = 3h2

between the successive area values are not constant, but the second differences for 
2

students had been exploring how different table configurations for the same func-
tion, in which the height increased by constant values of 1, 2, or 3 cm, resulted in 
changes in the second differences. They had never encountered a table in which 
the h
differences would be.

encouraging justification or clarification 

thinking:

Daeshim
Jim Publicly Sharing; Rejecting)
Bianca Encouraging Clarification)
Ally
Daeshim
Jim

Figure 7. Daeshim’s additional length column for the height/area table. 

Bianca highlighted Daeshim’s generalization by asking him to explain its origins, 
and Jim and the others further directed attention to his generalization by rejecting 
its correctness. In creating his generalization, Daeshim had introduced a third 
column, between the height and area columns, depicting the length of each rectangle 

DiRoG h2  

the difference between successive height values was 1, but it was not correct for 

This  prior  generalization  is  in  error  by  a  factor  of   h  (see  Appendix  for  further  discussion).
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other h values. In contrast, Jim calculated the DiRoG directly from the table. Bianca 
built on both Daeshim’s original idea and Jim’s result to state:

Bianca
Jim
Bianca
Jim Publicly Generalizing)

 Bianca’s actions in building on Daeshim’s and Jim’s work supported Jim’s gener-
alization. She then built on Daeshim’s original prediction and Jim’s calculation, 
publicly generalizing by attempting to make a connection between the two. Bianca 

-

Bianca to attend to that difference, which the students called DiH
DiH Publicly Generalizing)

The process of reacting to and building on Daeshim’s and Jim’s predictions and 
public generalizations supported Bianca’s development of a new general rule that the 
DiRoG h2, or as Bianca would describe it, DiH2) times 2 

l, or DiL) divided by h DiH). Bianca’s reasoning corrected for 
the original generalization Daeshim had used in order to account for the differences 

y = ax2

Encouraging Justification or Clarification
DiH

DiH
30 over DiH Publicly Generalizing)

Bianca was not sure whether her generalization truly held for different h values, 
or whether it was only particular to this table. Daeshim engaged in the generalizing 

DiRoG = 
O.H.)2 O.L O.H 6

acknowledged that it was the same as Bianca’s idea. The students eventually decided 
to rely on the change in height and length values rather than the first table entry values 

6Daeshim’s  version  is  correct  only  for  tables  in  which  the  height  is  increased  by  the  original  value;;  
for  example,  for  an  m ! n  rectangle,  the  height  must  increase  by  m  each  time.  See  Appendix  for  a  
discussion  of  this  generalization.
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DiRoG DiH  2 DiL/DiH
which provides a correct way to determine the DiRoG for any uniformly increasing 

Figure 8 depicts the process of generalizing and engaging in generalizing-promoting 
actions described in Excerpt 1. The original problem statement served as an initial 

Figure 8. Generalizing-promoting actions and their associated generalizations.
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how to predict the DiRoG of the area from any well-ordered table of height/length/
area values. They began with an existing generalization of Daeshim’s, and the 

table with a h
encouraging reflection, building, and publicly generalizing supported the develop-

length/area table. The shaded rectangles represent the generalization that evolved over 
the course of the students’ conversation, whereas the rounded rectangles represent 
the students’ generalizing-promoting actions. It is particularly notable that the three 
actions of encouraging justification or clarification, building on an idea or generaliza-
tion, and publicly generalizing recurred over the course of the episode, even as the 
specific content of those actions changed throughout the course of the conversation.

Excerpt 2: Connecting the DiRoG to the height and length of the rectangle. After 
having determined ways to identify the DiRoG for well-ordered tables, the students 
began to encounter tables of data that were not well ordered. The teacher–researcher 

their length/height ratios and linking the linear tables to rectangles that grew in one 

Here is a table for a rectangle that’s growing in a way I’m keeping secret:

2) 

2 1

7

8 16

10

1 _____

1/2 _____

h _____

1.  Could this rectangle be growing in one direction only, or in both directions? 
How do you know?

2. What type of graph do you think this will be? Make a prediction:

Figure 9.



330 Generalizing-Promoting Actions

Even though many different types of rectangles could generate the values in the 

growing proportionally in both directions versus a rectangle growing only by 
height, keeping the length constant) due to their prior experiences in the classroom. 

y x2.) One student, Sarah, told 

asking the students to consider why the length was important in answering the 

TR: So why does finding the length help? What’s it tell us?
Jim
TR: Uh huh.
Jim: And then I kinda worked backwards.
TR Encouraging Justification or Clarification)
Jim: Because they were going up by 1s.

Having reflected on the utility of increasing by 1s, Jim used this information in 
a building action to re-create a table in which the height values increased by 1 and 

-
ences between successive length and area values. The teacher–researcher again 
encouraged justification or clarification by asking the students to consider the 
purpose of calculating the difference between successive length values:

TR
Jim: It’s the DiH.
TR Publicly Sharing by Revoicing)
Jim: Oh yes . . . no, DiL.
TR Publicly Sharing by Revoicing)
Jim Public Generalization)
Bianca

Jim’s public generalizing appeared to prompt a new potential generalization for 

in the length. Bianca simply may have noticed that this was the case for the 
re-created table, because the difference in successive length values was half the 
DiRoG. Bianca’s hypothesis is correct: The function represented in the table is A = 

h2. This is true for tables in which the height value increases by 1, because the 
value a in y = ax2

can be calculated as 2a for any y = ax2 table in which h is 1. However, it is not 
clear whether Bianca thought of her generalization as universal or as pertaining to 
this particular table only.

The teacher–researcher again encouraged the students to reflect on the difference 
in lengths:

TR Encouraging Justification 
or Clarification)
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Bianca: Well, if you use all that criteria, you’re bound to figure out something.
TR
Jim  h 

Publicly Generalizing)
TR h Publicly Sharing by Revoicing)
Jim
Bianca: I bet you . . . 
Jim h
TR h Publicly Sharing by Revoicing)
Jim
Bianca

could just plug everything into, and it would work.

The teacher–researcher’s repeated prompts for the students to reflect on the 
purpose of calculating the difference in length values encouraged Jim to develop a 
generalization, which he stated incorrectly. Her revoicing actions then prompted 
Jim to revise his generalization. The teacher–researcher was unsure whether all of 
the students followed Jim’s reasoning, particularly because his utterances as he 
thought out loud were not particularly clear. Therefore, she once again encouraged 
justification or clarification, this time asking about the origins of Jim’s generaliza-
tion:

TR h

Tai:  Well, we kind of . . . well, I kind of looked at the 7 and 8. Because they were like, 
h2

always, like, the difference in the length divided by the difference in the height.

In response to the teacher–researcher’s prompts, Tai stated another generaliza-
tion, that the a in y = ax2 is the ratio of the change in length to the change in height 
for a rectangle growing in proportion to itself. The teacher–researcher publicly 

DiL/DiH = # in front of h2

DiRoG DiL over DiH 7

Refining generalizations. In contrast to the first episode, this episode is driven 
by the teacher–researcher’s guiding remarks as the group discussed ideas as a 
whole. Figure 10 depicts the relationships among the generalizing-promoting 
actions, strategies, and generalizations that occurred in the episode. The rounded 
rectangles represent the generalizing-promoting actions—those carried out by the 
teacher are dashed. The generalizations are shaded, and the strategies students used 
are depicted in ovals. At times, two actions appeared to work together to promote 

7

values  was  1;;  it  is  not  valid  for  every  table  (see  Appendix).
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the episode, the teacher–researcher’s act of publicly sharing Tai’s generalization 
appeared to support Bianca’s action of publicly generalizing, and these actions 
worked together to foster Ally’s building action to create her new generalization.

Figure 10. Relationships among generalizing-promoting actions and generalizations.
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Throughout this episode the teacher–researcher encouraged the students to reflect 
on the generalizations they were developing, particularly to explain why their 
strategies and ideas made sense. The initial strategies on which the students relied, 

ordered table, also worked together with the generalizing-promoting actions to 
advance the students’ thinking. The students’ responses to encouragement to reflect 
on their strategies and generalizations, in combination with the teacher–researcher’s 
revoicing acts, supported the development and refinement of new generalizations. 
As seen in Figure 10, it was a combination of the students’ strategies, the teacher–
researcher’s actions, and the students’ actions that seemed to foster the evolution 
of the generalizations that occurred throughout the episode.

Students’ ownership. There were times when making and encouraging generaliza-

Excerpt 1, the students took up this role themselves. Students’ ownership of the 
encouraging roles can also be seen as they encouraged justification and clarifica-
tion. The teacher–researcher’s statements encouraged the students to explain why 
their strategies and generalizations made sense, which contributed to a classroom 
culture that emphasized explaining why. The students also jointly contributed to 
this culture, and their ownership of it is seen throughout Excerpt 1 as they repeat-
edly asked one another to explain or justify their statements.

The nature of the problems presented and the sense of ownership that the students 
took over them also contributed to the chain of generalizing. The problem in 

and encouraged their initial generalization attempts. Similarly, in Excerpt 2, the 
students’ interaction with the problem situation encouraged generalizing in a 
particular direction. They adapted the problem by creating new tables, which 
encouraged the development of new generalizations that attended to the differences 
in both height and length values. The students’ curiosity about particular features 
of the various problem contexts was influenced by the prior generalizations they 

which they engaged.

DISCUSSION

Generalization is acknowledged to be a critical component of mathematical 
activity but remains difficult for students to do successfully and for teachers to 

1996). To better understand the types of interactions that support students’ general-
izing, this study examined the mathematical activity of 6 students and their teacher–

the form y = ax2. In viewing the generalizing-promoting actions and the interaction 
cycles together, a number of specific actions emerge as particularly salient in their 
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-

powerful classroom actions that can support the generalizing process, as has been 

actions identified in prior research, new actions also emerged as playing a key role 

-
ical relationships were important in fostering the generalizing process.

Generalizing as Situated

This study continues the tradition of considering how generalizing operates as a 
situated activity. Learning arises out of collective representations that are rooted in 
a community, occurring through experiences that are mediated by interaction, 
language, and tools; the same is true of generalizing. One intention of the teaching 

relationship between the height, length, and area of growing rectangles, but the 
students co-opted these problems in order to investigate what the constant second 

related to the functional formulas relating height and area, and how to predict the 
second differences for different table configurations. The robust nature of the rect-
angle context and its associated tasks supported these investigations and thus was 
an important factor in influencing the types of generalizations the students produced.

The students’ control over the direction of their mathematical investigations 

initial development of the teaching experiment, as well as the nature of the problems 
the research team developed on a daily basis in response to the students’ evolving 
interests. The activities changed from emphasizing direct functional relationships 
between the height and area of rectangles to ones that promoted a deeper under-

h 
a for y = ax2

what the value of a represented in terms of the height and length of a rectangle.

generalizing, publicly sharing, building, and encouraging justification or clarifica-
tion as they attempted to make sense of a new mathematical domain. These actions 

theory of transfer, in which she analyzed learners’ participation in constructing the 
content that they could transfer to new contexts. The interaction cycles similarly 
identified ways in which the students participated in shaping the direction of the 
generalizations that they ultimately developed. From the interactionist perspective, 
this underscores the notion that mathematical themes are not fixed but are instead 
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Eisenmann, 2003).
situated generalization, attending to 

the lack of a true separation between generalizing and the realm in which it takes 
grounded interpretation

account of generalization, in which transportable understandings come from the 
interaction between the physical elements of simulations and the interpretations of 
those elements. Similar to the way in which others have described situated generaliza-

emphasized the notion that concrete and abstract learning are interconnected. The 
results from this study mirror these stances, highlighting how students built on one 
another’s drawings, representations, and ideas to create generalizations that articu-
lated new relationships and yet remained connected to the artifacts that fostered them. 

students created that were dependent upon the particular height/length/area tables they 
developed, relating the DiRoG to the change in height and change in length values.

The notions of situated abstraction and abstraction in context also highlight the 

students in the teaching experiment were tied not only to the problems, drawings, 
and tables they developed but also were shaped by the students’ co-constructed use 
of language as they thought about height, length, area, and constant differences. 
The use of the dynamic software The Geometer’s Sketchpad also influenced 
students’ use of language, representation, and generalizing activities. Studies 
support the notion that students’ reflection on the results they observe when 
working with dynamic software can influence the direction of their mathematical 

various affordances of dynamic software that may support students’ reasoning 

In this case, the students’ ability to easily compare changing height, length, and 
area values contributed to the nature of the tables they invented to organize and 
record these data. In particular, the fact that their dynamic explorations allowed for 
the adjustment of either height or length encouraged the students to include both 

rely only on one or the other, such as A h2. The language that the students 
created to account for the phenomena they noticed, such as DiRoG, DiH, and DiL, 
also shaped the direction of their generalizing. Many of the general statements that 
the students ultimately created, such as DiL/DiH = a, are intimately connected to 
the dynamic representation in Sketchpad, the students’ resulting table configura-
tions, and the specialized language developed in this particular setting, but they are 
also generalized representations of these relationships.
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Generalizing as a Collective Activity

This study has described how the students’ interactions supported and shaped 
their generalizing activities. The participants made decisions about what they 
valued and were interested in pursuing, which influenced the direction of their 
generalizing. The teacher–researcher also strongly influenced these activities, and 
the nature of this influence is particularly evident in the second interaction episode. 
The teacher–researcher’s continued emphasis on publicly sharing generalizations, 
encouraging generalizing, and encouraging justifying and clarifying set the tone 
for a classroom culture that supported and encouraged these activities. As 

-
action in the classroom appears as teacher–student interaction as well as student-

The interaction cycles emphasized the ways in which an initial generalization 
can evolve over the course of an extended period of interaction and reflection, 
passing through many different forms, to the point at which the final, stabilized 
version of the generalization cannot be said to have been developed by any one 
student in isolation of the group’s interactions. This can be seen as collective gener-
alizing
of collective proving collective abstrac-
tion. In each case, the collective activity, be it generalizing, proving, or abstracting, 
has its origins in the social plane of public discourse. 

Learning from the possible: Implications. The study reported in this article was 
from a small-scale setting with 6 students and 1 teacher–researcher. Unlike a typical 
whole-class setting, here the teacher–researcher had the freedom to follow the 
students’ mathematical interests and investigations without the constraints of time 
pressure or content-coverage pressure. Although this setting differed in significant 
ways from typical mathematics classrooms in the United States, it still provides an 
important lens on the types of interactions that are possible as students investigate 
mathematical contexts and develop generalizations. This work builds on Shulman’s 

From investigating this small-scale setting in which students collaborated in inter-
action to generalize together, it was possible to identify a set of actions that can 
support productive generalizing. The outcomes of this study suggest a professional 

generalizing-promoting actions, although they occurred in an idealized setting, are 
ones in which teachers and students could potentially engage within the context of 
whole-class settings. A necessary line of future work will entail the consideration 
of ways in which these actions could translate to larger classrooms and teacher 
education initiatives.
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mathematically relevant properties in and across situations. Pedagogical moves in 
a whole-classroom context such as publicly sharing generalizations, encouraging 
generalizing, and encouraging justification and clarification can serve this role as 
students struggle to make sense of problems and contexts. The results of this study 
also suggest, however, that the role of an orienting guide need not be limited to the 
teacher; students who work in collaboration with one another also can play this 
role. The act of publicly sharing generalizations and conjectures opens a space for 
students to respond to, accept or reject, refine, and build on initial attempts in a 
process that sifts through multiple ideas in order to ultimately highlight those that 
are mathematically powerful. Activity-oriented classrooms that support students 
working together as they engage in mathematical generalizations could provide a 
fruitful setting to foster students’ engagement in the types of generalizing-
promoting actions identified in this study.

The results from this study contribute to a view of generalizing as a dynamic, 
evolving, and collective process, furthering the tradition of moving beyond viewing 

promoting actions as both discrete acts and as pieces of larger classroom interaction 
cycles, this study situated generalizing within the social context of the class setting, 
rather than focusing solely on the students’ actions or the teacher’s pedagogical 
moves. Instead, it provides a lens for viewing generalizing as a situated act that is 
influenced by—and influences—the interrelated actions of students, teachers, 
problems, representations, and artifacts.
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APPENDIX

The Accuracy of Students’ Generalizations in the Growing Rectangle Context

The students in the teaching experiment worked exclusively with the growing 

in this paper) was limited to the y = ax2 case, as a representation of a rectangle that 
grows while maintaining its length/height ratio, as shown in Figure A1. Consider 
a specific case in which the original rectangle in Figure A1 is 2 cm high by 4 cm 
long. If we increase the height by 1 cm to become 3 cm, then the new length will 

k cm to become  
2 + k k) = 4 + 2k cm. In each case, regardless 
of the value of k, the length/height ratio of 2 is maintained.

m + k
m

n

n + (n/m)k

Figure A1. Rectangle that grows proportionally by maintaining its length/height ratio.

The students represented this growth in height/area tables and height/length/area 
tables. A general height/length/area table that represents this type of growth, in 
which the height increases by a uniform amount—some constant k—appears in 

first differences and the second differences 
in a well-ordered table of values of a polynomial function, and students are 
instructed that, for a polynomial function, constant first differences mean the func-

so forth. If we calculate the first differences of the area in Figure A2, we obtain 

Height Length Area

m n mn

m + k n n/m)k mn + 2nk n/m)k2

m + 2k n n/m)2k mn + 4nk n/m)k2

m  +  3k n  +  (n/m)3k mn  +  6nk  +  9(n/m)k2

Figure A2. Height/length/area table in which the height grows uniformly by k.
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2nk n/m)k2, 2nk n/m)k2, and 2nk n/m)k2, respectively. Calculating the 
n/m)k2 for every k-unit 

increase in the height.
To return to our specific case with a 2 cm by 4 cm rectangle, consider the two 

tables in Figure A3, in which the height values increase by uniform amounts. In 

For Table 1, the second differences can be directly calculated as 4 cm2 for each 
1-cm increase in height, and for Table 2, the second differences are 100 cm2 for 

 
Figure A2, we could also calculate the second differences directly with the formula 

n/m)k2 for every k-unit increase in the height. Both tables refer to a rectangle in 
which the height, m, is 2 cm and the length, n, is 4 cm. Therefore, for Table 1 with 
k 2 = 4, and for Table 2 with k

2 = 100.

Table 1 Table 2

Height Length Area Height Length Area

2 4 8 2 4 8

3 6 18 7 14 98

4 8 32 12 24 288

10 17 34

Figure A3. Two height/length/area tables for a growing 2 cm by 4 cm rectangle.

If we consider m and n to be particular constants representing the height and the 
length of a rectangle, respectively, we can represent the area of the rectangle in 
terms of its height, h, as follows: Area n/m)h2. So, for instance, for the 2 cm by 
4 cm rectangle, we could express the area as Area h2, or Area = 2h2. When 
the height is 2 cm, the area of the rectangle is 8 cm2. When the height is 17 cm, the 

2. This representation gives new meaning to the parameter a in y = 
ax2 n/m)h2, a = n/m, or the length/
height ratio of the rectangle.

n/m)k2 for 
each k-unit increase in the height, for a table in which the uniform increase in height 

n/m), or 2a. However, for tables 
in which the uniform increase in height values is something other than 1, we must 
adjust by multiplying 2a

Translating the Students’ Mathematics

The students created a number of different generalizations that they expressed in 
terms of formulas that relied on their invented terms. Some of these generalizations 
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were correct only for a particular type of table or for a limited domain, whereas 
others were more broadly applicable. This section assesses the correctness of the 
students’ generalizations in comparison to the mathematics discussed in relation-
ship to the general rectangle in Figure A1 and the general table in Figure A2.

DiL/DiH = a the same thing as mine, as the DiRoG a
do these two formulas mean? DiL represents the uniform increase in length values 
in a height/length/area table, and DiH represents the uniform increase in height 
values. Is the first statement DiL/DiH = a true for any table in which the height values 
increase by some uniform amount k? Considering this in relationship to the general 
table in Figure A2, DiL n/m)k, and DiH is k. Therefore DiL/DiH n/m)k/k = 
n/m n/m) = a, so the generalization DiL/DiH = 

a is correct. This makes sense, because we can also think of DiL/DiH in terms of the 
rectangle: DiL represents how much the length grows when the height increases by 
DiH, and the ratio of the increase of the length to the increase in the height will be 

a.
What about the statement that DiRoG/2 = a? Here DiRoG

-
ence. Is this statement true for any uniformly increasing table? The second differ-

DiRoG n/m)k2 n/m)k2. Because 
a n/m), Bianca’s generalization is not true for any table: It only holds for tables 
in which k = 1.

Bianca makes another generalization that is reported in the Encouraging 
Justification or Clarification section, and an alternate form is referenced by Sarah 

H over 
L
rectangle, expressed their ratio as a fraction H/L, and either simplified the fraction 
until H = 1 and doubled the length to find the DiRoG or reduced the fraction until 
H = 2 and used the corresponding length value as the DiRoG. This generalization 
was based on a table in which the height increased by 1-unit values. Using the 

m/n
n/m). Then one would take twice the value of the denominator as the second 

n/m). However, for any table with a uniform increase of k 
n/m)k2. Therefore, Bianca’s 

generalization is appropriate for the specific table with which the students were 
working, because in that case k was 1. However, her generalization is not general-

n/m) as the second differ-
ences, which again would be in error by a factor of k2.

In Excerpt 1 of the Results Part II, recall that the students worked with a table in 
-

mined the function to be A = 3h2. The excerpt begins when Daeshim uses a 
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previously developed generalization, DiRoG h2 l. Translating that to the 
language in the general table in Figure A2, the term h is the value by which the 
height increases, or k. The term l is the value by which the length increases, or 
n/m)k. Therefore, Daeshim’s original generalization can be expressed as DiRoG = 

2k 2 n/m)k, or 2k3 n/m), instead of the correct formula for calculating the second 
differences, 2k 2 n/m). This is why Daeshim’s original calculation was in error by 

2 2. For previous tables in which the 

Bianca then built off of what Daeshim had developed to conclude that  
DiRoG DiH 2 ! 2 ! DiL)/DiH. Expressed in the language of the general table 
in Figure A2, this can be expressed as DiRoG = k 2 ! 2 ! n/m)k/k n/m)k 2. 
Therefore, Bianca correctly adjusted Daeshim’s generalization to create a way to 
calculate the DiRoG for any uniformly increasing table. Daeshim also expressed 

O.H.)2 O.L. O.H. O.H. 
m) and O.L. refers to the rectangle’s 

n). Daeshim’s representation can be rewritten as 2m2n/m, or 2mn. 
Recall that the way to determine the second differences in a general table is to 

n/m)k 2, so Daeshim’s generalization will only hold when k 2 = m 2; in 
other words, this is only true when one creates a table in which the height increases 
by iterating itself, so that the height values are m, 2m, 3m, and so on.  


