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Algebra in the Middle School: Developing
Functional Relationships Through Quantitative
Reasoning

Amy B, Ellis

Abstract Understanding function is a critical aspect of algebraic reasoning, and
building functional relationships is an activity encouraged in the younger grades to
foster students’ relational thinking. One way to foster functional thinking is to lever-
age the power of students’ capabilities to reason with quantities and their relation-
ships. This paper explicates the ways in which reasoning directly with quantities can
support middle-school students’ understanding of linear and quadratic functions. It
explores how building quantitative relationships can support an initial function un-
derstanding from a covariation perspective, and later serve as a foundation to build
amore flexible view of function that includes the correspondence perspective.

Functions and relations comprise a critical aspect of algebra, and recommenda-
tions for supporting students’ algebraic reasoning emphasize an early introduc-
tion of functional relationships in middle school (NCTM 2000). Students’ diffi-
culties in acquiring the function concept is well documented (e.g., Carlson 1998;
Carlson et 2. 2002; Cooney and Wilson 1996; Monk and Nemirovsky 1994), which
highlights the need to better support students’ emerging function concepts in ways
that are mathematically productive, setting a strong foundation for more formal
algebraic reasoning at the high school level. In this chapter I argue that reason-
ing directly with quantities and their relationships constitutes a powerful way to
help students build beginning conceptions of function at the middle-school level. In
particular, reasoning with quantities can directly support a covariation approach to
function, while also providing a foundation for reasoning more flexibly with fune-
tional relationships later on.
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What Is Quantitative Reasoning?

Quantities “are attributes of objects or phenomena that are measurable; it is our ca-
pacity to measure them-—whether we have carried out those measurements or not—
that makes them quantities” (Smith and Thompson 2007, p. 101, emphasis original).
A guantity is composed of one’s conception of an object, a quality of the object, an
appropriate unit or dimension, and a process for assigning a numerical value to the
quality (Kaput 1995); length, area, speed, and volume are all attributes that can be
measured in quantities. When students engage in quantitative reasoning, they op-
erate with quantities and their relationships; quantitative operations are therefore
conceptual operations by which one conceives a new quantity in relation to one or
more already-conceived quantities (Ellis 2007). For example, one might compare
quantities additively, by comparing how much taller one person is to another, or
multiplicatively, by asking how many times bigger one object is than another. The
associated arithmetic operations would be subtraction and division.

To illustrate the differences between a formal algebraic approach and a quan-
tities-based approach, consider two responses to the following problem about the
nature of quadratic growth:

Problem 1 Explain why the “second differences” for a quadratic function y = ax?
are 2a for well-ordered tables in which the x-values increase by 1.

This problem emerged from an algebra II classroom in which the students” in-
troduction to non-linear functions included an algorithm for determining the degree
of a function based on the finite differences rule (Ellis and Grinstead 2008). The
students easily remembered this algorithm, but it was unclear whether anybody un-
derstood its origins.

Justification #1: A typical algebraic argument involves relying on variables to
represent a general case and writing and manipulating expressions. For instance,
one can create a general table for y = ax? in which the x-values increase by 1:

Fig. 1 Table of x- and
y-values for y = ax?

16c

Calculating the first differences reveals values of 3a, 5a, and 7a. Calculating sec-
ond differences reveals a constant second difference of 2a, and this approach can be
generalized to any three consecutive entries in the table in whichx =n, x = (n+1),
and x = (n + 2). Corresponding y-values will be y = an?, y = a(n + 1)?, and
y = a(n + 2)%. Calculating the first differences reveals values of a(2n + 1) and
a(2n + 3), with the second difference therefore 2a. This approach lives entirely in
the world of symbolic expressions in a manner that is divorced from any realizable
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situation and its constituent quantities. As a formal algebraic justification it provides
a valuable opportunity to generalize beyond specific numbers, but it may fail to sup-
port students’ understanding of the behavior of quadratic growth, what the second
differences can represent, and why they remain constant for quadratic functions.

Justification #2: One group of eighth-grade students created and analyzed tables
of quadratic data by exploring the relationships between the lengths, heights, and
areas of rectangles that grew while maintaining their length/height ratios. One stu-
dent attempted a justification by imagining an H x L rectangle that grew in discrete
increments by increasing H units in height and L units in length. The student con-
ceptualized the first differences, which he called the rate of growth (RoG), as the
growth ‘of the area when the height increased by H units. He conceptualized the
second differences as the difference in the rate of growth (DiRoG), describing it as
the “rate that the increase in the area is increasing:”

Fig. 2 Eighth-grade '.C]
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The student reasoned with the relationships between the quantities height, length,
and area, engaging in quantitative operations as he compared their differences. He
concluded that because he could calculate the difference in the rate of growth as
2HL each time the rectangle grew an additional A units in height and L units in
length, the second differences must represent twice the original area of the rectan-
gle.

The student’s justification contains some limitations, particularly because his
drawing only addresses a particular type of growth in which the height and length
increase by whole-unit increments of H and L. However, even though the student
did not reason about arbitrary increases of H and L, his justification represents
a meaningful attempt at a generalized argument. The student’s reliance on the re-
lationships between the quantities height, length, and area helped him develop an
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understanding of what the second differences represented, which provided a spring-
board for further investigation of why the second differences in well-ordered tables
are always constant for quadratic functions.

Steffe and Izsak (2002) argue that quantitative reasoning should be the basis for
algebraic reasoning. Focusing on relationships between quantities, rather than on
numbers disconnected from meaningful referents, can ground the study of algebra
in people’s conceptions of their experiential worlds {Chazan 2000). This provides a
meaningful starting point for mathematical inquiry, in contrast to taking numbers,
shapes, and relationships as givens in their own right (Thompson 1994). 1 propose
that adopting a quantitative reasoning approach can support students’ meaningful
engagement with algebra in general and with functions in particular. I will present
the results from two teaching experiments with middle-school students, the linear
functions teaching experiment and the quadratic functions teaching experiment. Ex-
cerpts from both teaching experiments demonstrate a number of ways in which stu-
dents’ reasoning with quantities fostered particular types of function understand-

ing.

The Importance of (and Difficulties with) Functional Thinking

The function is a central concept around which school algebra can be meaning-
fully organized (Kieran 1996; Yerushalmy 2000), and many researchers have argued
for the importance of a functional perspective in contrast to the more traditional
approach that focuses on algebra as symbolic manipulation (Bednarz et al. 1996;
Schliemann et al. 2007). Adopting an approach that places functional relationships
at the center of algebra allows us to couch algebraic thinking as the use of a vari-
ety of representations in order to make sense of quantitative situations relationally
(Kieran 1996). Beyond theoretical considerations, there are also practical reasons
for emphasizing a functional approach to algebra. Attaining a deep understanding
of function is critical for success in future mathematics courses (Carlson et al. 2003;
Romberg et al. 1993) and in courses on scientific inquiry (Farenga and Ness
2005). Many have argued that the function concept is foundational for under-
standing concepts in advanced mathematics (e.g. Kaput 1992; Rasmussen 2000;
Thompson 1994; Zandieh 2000), and as Romberg et al. (1993) argued, “there is
general consensus that functions are among the most powerful and useful notions in
all mathematics™ (p. 1).

Given the widespread agreement on the importance of functions for algebraic
reasoning, the value of organizing algebra content around a functions approach, and
the need for a deep understanding of functions for further mathematical and scien-
tific inquiry, it is important that we develop ways of helping students successfully
understand functional relationships, However, these endeavors have proved diffi-
cult: Many studies conducted to investigate students’ function understanding sug-
gest that they demonstrate a limited view of the function concept (e.g. Carlson 1998;
Sfard and Linchevski 1994; Thompson 1994; Vinner and Dreyfus 1989). In general,
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students emerge from middle school and high school algebra classes with a weak un-
derstanding of function (Carlson et al. 2002; Cooney and Wilson 1996; Monk 1992,
Monk and Nemirovsky 1994).

Two examples from my previous studies illustrate some of the common difficul-
ties students experience when encountering functional relationships. The first comes
from a problem presenting a direct-ratio situation within the context of a linear func-
tions unit (Ellis 2009):

" Problem 2 Say you have a pile with 2 rolls of pennies and a pile with 5 rolls of

pennies. If you were to compare their weights, what might you notice?

Fig. 3 Picture accompanying
the penny-role problem

One eighth-grade student, Juanita, made both additive and multiplicative com-
parisons across the two piles, noting that the bigger pile had 3 more rolls, and would
weigh “2.5 times as much” as the smaller pile. When she investigated the pattern in
a tabular form, however, Juanita was unable to recognize the relationship as linear
and she could not develop an equation for the data:

Fig.4 Table of number of #of Rolls | Weight

rolls and weight values 2 90z
5 2250z

12 54 oz

16 72 0z

AE: What does this table tell you?
J: It couldn’t be a straight line. -
AE: How come?
J: (Calculating differences between successive x-values in the table): 3, 7, 4, and
that’s probably not an even spaced one. Wouldn’t be a straight line.
AE: And what’s your reason for that?
I: If you made your graph, it doesn’t look like it'd be a straight line because it
goes up (calculates differences between successive y-values in the table) by
13.5 and 31.5 and then 18,

Juanita created a rough sketch of the data to confirm her belief that the data were
not linear: '
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Fig. 5 Juanita’s graph of the
rolls and their weight

Determined to find a pattern for the data in order to come up with an equation,
Juanita continued to search by taking the differences between the rolls and the
weight for each table entry, and then taking the differences of those results:

I: 7, 17.5, 42, 56. That's what it goes up by. If you do in between them it’s 10.5,
24.5, and then 14. ... There’s no patterns anywhere!

Juanita’s difficulty in recognizing the data as linear and her inability to create
an equation mirrors some of the documented difficulties students experience with
tables, patterns, and functions. Although students are adept at searching out pat-
terns in tabular representations, many struggle to perceive a functional relation-
ship (MacGregor and Stacey 1993; Mason 1996; Schliemann et al. 2001). Even
when students are able to detect patterns, they may not be able to formalize those
patterns correctly by writing appropriate equations or algebraic expressions (En-
glish and Warren 1995; Orton and Orton 1994; Stacey and MacGregor 1997).
Students struggle to correctly translate between tabular, graphical, and algebraic
representations of functional relationships, and can become overly dependent on
particular artifacts of representations, such as only recognizing a function as lin-
ear if its tabular representation has uniformly-increasing x-values (Lobato et al.
2003).

A second example illustrates some of the difficulties students can encounter when
approaching non-linear functions. High-school algebra I students encountered the
following graph and attempted to find an equation for the parabola (Ellis and Grin-

stead 2008):

Problem 3 Ravi has 120 meters of fence to make his rectangular rabbit pen, He
wants to enclose the largest possible area. Here is Ravi’s graph of the relationship
between the width and the area:
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Fig. 6 Graph for the rabbit pen problem

~

Alexis, a tenth-grade student identified by her teacher as a high performer, deter-
mined that the equation for the parabola should have the form y = —ax? 4 900,
because the maximum value of the parabola was at y = 900. In addition, Alexis
knew that the a-value should be negative, because the parabola was “upside down.”
In order to determine the value of “a”, Alexis explained, “you could do this, rise
over run.” She picked two points, (10, 500) and (20, 800), and then calculated the
rllse and the run, ignoring the scales on the axes: “So it’s!3 over 1, which is ba-
sically 3. Alexis concluded that the equation of the parabola should therefore be
y = —3x2 + 900. : .
;
H

Alexis’ treatment of the graph and development of an equation reflects the
research demonstrating students’ difficulties understanding the value of “a” in
y= ax® + bx + ¢ (Dreyfus and Halevi 1991; Zaslavsky 1997). The challenges
in connecting algebraic and graphical representations of quadratic functions can
further contribute to students’ struggles to describe the effects that changing the
parameters @, b, and ¢ have on graphs of parabolas (Bussi and Mariotti 1999;
Ijemhardt et al. 1990; Zazkis et al. 2003). In addition, Alexis’ inappropriate adop-
tion of the rise over run method for generating a “slope” mirrors many stu-
dents’ tendencies to generalize from linearity, regardless of the appropriateness

i
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of that generalization (Buck 1995; Chazan 2006; Schwarz and Hershkowitz 1999;
Zaslavsky 1997).

Given the widespread difficulties students experience as they learn about func-
tions, it is important to develop methods for helping students build a productive
understanding of functional relationships from the time that they first experience
them in the algebra classroom. Taking a quantities-based approach to informal (and
later formal) functional reasoning can support students’ initial approaches to func-
tional relationships as they explore coordinated changes between covarying quanti-
ties.

An Alternative Approach to Function: Quantities and
Covariation ‘

Traditional approaches to function rely on a correspondence or stasis view (Smith
2003), in which one approaches a function as the fixed relationship between the
members of two sets. Farenga and Ness (2005) offer a typical correspondence def-
inition of function: “One quantity, y, is a function of another, x, if each value of x
has a unique value of y associated with it. We write this as y = f(x), where f is
the name of the function” (p. 62). This static view underlies much of school math-
ematics, particularly in the treatment of functions. Alexis’ approach reflects this
typical school experience, as she examined the graph and then attempted to build an
equation without imagining the two quantities changing together. Instead, Alexis’
treatmient disconnected the properties of the graph and its associated equation from
the contextual situation that referenced the changing relationship between width and
area.

In contrast, Smith and Confrey (Smith 2003; Smith and Confrey 1994) de-
scribe the covariation approach to functional thinking. Under this approach, one
examines a function in terms of a coordinated change of x- and y-values. Con-
frey and Smith (1992, 1994, 1995) have found that students’ initial entry into a
problem is typically from the covariational perspective. In addition, they argue that
viewing a function as a way of representing the variation of quantities can be a
more powerful approach than the correspondence model, particularly in its abil-
ity to promote thinking about functions in terms of rates of change (Slavit 1997;
Smith and Confrey 1994). As Chazan (2000) argues, the covariation approach can
support a view of mathematics as a way of making sense of the phenomena of rela-
tionships of dependence, causation, interaction, and correlation between quantities.

Viewing a function as a relationship between covarying quantities is part of a
larger idea that acknowledges the importance of the mathematics of change. An
emphasis on the mathematics of change can encourage students to examine patterns
in relationship to the ways in which they grow or can be extended. Many have
suggested that this approach is a critical but overlooked element in the standard
U.S. curriculum (Nemirovsky et al. 1993; Mokros et al. 1995). Exploring function
as a way to measure change and variation is typically reserved for calculus, thus
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effectively restricting access to these ideas to the 10% of students who will reach the
highest level of high-school mathematics (Roschelle et al. 2000). However, adopting
a rate-of-change perspective can be accessible even for beginning algebra students
in middle school. One way to foster students” understanding of the mathematics of
change is through introducing rich situations that encourage students to construct
meaningful relationships between quantities.

For instance, one group of seventh-graders in a linear functions teaching exper-
iment explored constant rates of change by investigating two situations, gear ratios
and constant speed (Ellis 2007). The group consisted of 7 pre-algebra students who
had not yet studied linear functions or graphs in their mathematics classroom, and a
focus of the teaching experiment was to emphasize the activities of generalizing and
justifying through meaningful engagement with quantitative referents. The students
met for 15 sessions and during the first eight sessions they worked with physical
gears to examine different gear ratios. Early in the sessions, the students connected
a gear with 8 teeth to a gear with 12 teeth and then spun the gears together, trying to
identify ways to simultaneously keep track of the rotations of both gears. By putting
small pieces of masking tape on one of the teeth of each of the gears, the students
devised a counting system for keeping track of both gears’ rotations simultaneously,
and ultimately created tables of gear rotation pairs such as the following:

Fig. 7 Maria’s table of gear treors
rotations & rotobe =B rotakes 43
frototes 2= B rotes V3
A rtodes 2=B rolates 2:2
Aro\,at-e; 4= potabs 2 /‘3
£ rototes S =6 natey -
= Y21
A otokgs p B WL,

okoes =B ro'al?s
:{ rd&&bx z bfbtaﬁs 5’/5

By working with the physical gears, the students not only found ways to coordi-
nate the rotations of each of the gears, but also developed a covariation language for
discussing the nature of the coordinated quantities. For instance, in describing the
table in Fig. 7, Dora explained, “For a small turn, the big one goes a two-thirds turn.
For the big to turn once, the small one goes one and a half turn.”

Carlson and Oehrtman (2005) note that students need to be able to imagine how
one variable changes while imagining changes in the other. Relying on situations
that involve quantities that students can make sense of, manipulate, experiment with,
and investigate can foster their abilities to reason flexibly about dynamically chang-
ing events. These experiences were helpful when the linear functions students even-
tually encountered tables of data referencing multiple rotation pairs, such as the one
shown in Problem 4:
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Problem 4 The following table contains pairs of rotations for a small and a big

gear. Did all of these entries come from the same gear pair, or did some of them
come from different gears altogether? How can you tell?

Fig. 8 Table of gear pairs Small | Big

7172 | 3

27 18
41/2 | 3

16 102/3
1/10 1/15

Dora explained her thinking about the problem by referencing the gears:

D: Think of a gear. When you spin it, the teeth on it pass through. One gear has 8 -

teeth, the other has 12, When you spin them, teeth pass through each other. For
every two-thirds of the teeth passed on the big one, that’s 8 teeth, so the small
one wrns once, If the small one goes 3 turns, the big one will go 2. So if the
small one goes 7 and a half times, the big gear will go 5.

A covariation approach can also ultimately support students’ abilities to express
function relationships algebraically. After hearing Dora’s explanation, another stu-
dent, Larissa, expressed the gear ratio relationship by writing *s(2/3) = ", which
represents the number of rotations between the small gears and the big gears. Larissa
explained, “s is the number of small rotations, the number of rotations that the small
gear does. And then b is the big rotations, the number of rotations that the big gear
makes.”

Carlson and Oehrtman identified a covariation framework (2005), in which they
decompose covariational reasoning into five mental actions. This decomposition
has proved useful for promoting covariational reasoning in students. Although the
framework evolved in the context of calculus students’ reasoning, the first four men-
tal actions described can also apply to algebra students. (The fifth mental action is
the coordination of instantaneous rate of change, which is not as applicable to be-
ginning algebra topics.) The gear rotation situation supported students’ abilities to
coordinate the change of both quantities simultaneously, fostering the first three
mental actions in the covariation framework: (1) coordinate the dependence of one
variable on another variable, (2) coordinate the direction of change of one variable
with changes in the other variable, and (3) coordinate the amount of change of one
variable with changes in the other variable. Because quantitative reasoning requires
the formation of relationships between quantities, students’ activity in constructing
these relationships can support the meaningful coordination of variables in function
relationships.

The fourth mental action is the coordination of the average rate-of-change of the
function with uniform increments of change in the input variable. Exploring phe-
nomena that are linearly related but not in direct proportion can prompt a shift from
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direct multiplicative comparisons to the creation of ratios of change between co-
ordinated variables. In the gear context, the students examined scenarios in which
one gear spun a certain number of times on its own before a second gear was con-
nected to it, at which point they spun together. Although the situation is somewhat
contrived from an adult perspective, it was meaningful to students because it de-
scribed a familiar situation that they could directly imagine. The following table can
encourage students to coordinate the rates of change of each of the variables, both
because it is not well ordered and because it represents a situation that is not directly
proportional (the function described by the ordered pairs is y = (3/4)x + 5).

Problem 5 The following table contains pairs of rotations for a big and a small
gear. What is the relationship between the two gears?

Fig. 9 Table of gear pairs Small | Big
representing a y = mx + b 1 53/4
situation

4 8

12 14

25 23,75

One student, Timothy, identified the differences between successive table entries:

Fig, 10 Timothy’s
calculations with the gear pair
table

He explained, “The only thing I found out is that they go up by 3/4, because if you
subtract 1 from 4 and 5 and 3/4 from 8, you get 3 and 2.25, and 2.25 over 3 equals
3/4. And that’s how I found out that it works for all of them.” Pushed to explain why
this worked, Timothy said, “B goes up by 3/4 of what A goes up by.” When asked
to describe what was happening with the gears rotating, he noted, “B had already
turned 5 times. And B is like 3/4 the size of A. And so A times 3/4 means that it
only goes through 3/4 of its teeth.” When Timothy noted that B was 3/4 the size of
A, he spoke of the gear’s size but appeared to be thinking about the gear’s rotations
instead; this is consistent with the second half of his statement in which Timothy
said that B would only go through 3/4 of its teeth. Dora and several other students
expressed this relationship algebraically by writing “(3/4)a 4+ 5 = b”, and could
explain each part of the equation in terms of the relationship between the gears’ ro-

" tations and number of teeth. Ultimately the students were able to approach new data

by calculating the ratio of the change of one variable to the coordinated change in
the other variable in order to determine the appropriate relationship between mys-
tery gears.

Students’ first approaches to function are typically covariational in nature (Con-
frey and Smith 1992, 1994, 1995), but it is important to support these initial forays
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in a manner that supports a meaningful understanding of covarying phenomena, in
contrast to the common tendency to engage in recursive pattern seeking with naked
numbers. Although students are adept at creating multiple patterns, they can strug-
gle to identify patterns that are algebraically useful and generalizable. Embedding
these patterns in meamngfu] problem situations that require students to identify re-
lationships between covarying quantities can help circumvent the common pattern-
seeking traps that sometimes plague students. Quantity-based problem situations
can instead “serve as the true source and ground for the development of algebraic
methods” (Smith and Thompson 2007, pp. 96-97).

A Flexible Understanding of Functions

Coordinating Covariation and Correspondence Approaches

The prevalence of covariation approaches has been highlighted in the research lit-
erature, and this view provides a powerful mechanism for developing an under-
standing of function as a way of representing variation in coordinated quantities.
However, any complete understanding of functional relationships must ultimately
include a broader exploration of the relationships between two variables (Carraher
and Schliemann 2002). Carlson and Qehrtman (2005) argue that students must be
able to understand multiple views of function for success in mathematics: they must
develop an understanding of function as a process that accepts inputs and produces
outputs, as well as attend to the changing value of output and rate of change as the
independent variable is varied.

The shift from a covariation approach to the correspondence view can be diffi-
cult for students, but there is evidence that when working directly with quantities,
even young children can develop a flexible function understanding (e.g., Nunes et al.
1993; Schliemann et al. 1998, 2003). Working directly with accessible quantitative
relationships can aid in beginning algebra students’ investigations of functions from
multiple perspectives, as well as support their abilities to shift flexibly across dif-
ferent perspectives. The seventh-grade students’ experiences with gear ratios (and
later constant-speed situations) helped them create algebraic representations such
as “(3/4)a + 5 = b” that they could ultimately view in terms of both coordinated
changes in each gear and as a direct relationships between a and b. These experi-
ences helped the teaching-experiment students make meaningful sense of the pen-
nies problem (Fig. 3) that had caused such difficulty for Juanita, who was not in the
teaching experiment. Timothy’s response was typical of the teaching-experiment
students:

T: [Examining the table in Fig. 4]: Well, let’s see. 2 to 9 oz, so that’s 4.5 oz per
roll. For that. So multiply that by 5. Times 5, equals 22.5. So these (the first
two pairs in the table) are both from the same roll. Then multiply it by 12. 4.5
times 12 equals 54, so that’s from the same one. And then 16 times 4.5. 16
times 4.5 equals 72, so they’re all from the same thing because they all have
the same weight for 1 roll.
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AE: Do you think the graph is going to be linear or non-linear?
T: It’s all going to go on the same line.
AE: Why do you think that would happen?
T: Because whatever the weight is, you can multiply it by 1 over 4.5 to get the
number of rolls.

Timothy’s reliance on his understanding of the relationship between the number
of rolls and the total weight in ounces supported a direct comparison across the x-
and y-columns of the table. He noted that whatever the weight is (the input variable),
you can multiply it by 1 over 4.5 to get the number of rolls (the output variable); even
though this is the reverse of how we might typically approach a table from an input-
output perspective, it is correct and enabled Timothy to successfully solve a number
of extrapolation and interpretation problems. Moreover, Timothy could move flex-
ibly between the correspondence and covariation approaches, as evidenced by his
predictions about the table’s graph: “It just looks like to me that all you’re doing is
going up by 4.5 oz and 1 roll... it’s going up by the exact same thing every time.”

Reasoning with quantitative relationships can support students’ flexible move-
ment between different function approaches for quadratic functions as well. In the
quadratic functions teaching experiment (consisting of 15 sessions with 7 eighth-
grade students), I introduced quadratic phenomena in terms of the relationships be-
tween the lengths, heights, and areas of rectangles that grew while maintaining their
length/height ratios. Although none of the students had yet experienced quadratic
functions in their normal classrooms, they had all experienced other functional re~
lationships and graphs (such as linear functions) in their algebra or pre-algebra
courses. The students worked with a script in Geometer’s Sketchpad to explore what
happened to the dimensions of a particular rectangle (for instance, a 3 cm by 2 cm
rectangle) as it grew and shrank. As predicted, the students made sense of these
phenomena from a covariation perspective, imagining what would happen to the
area as the length (or width) increased by a uniform amount. The students created
their own tables of data to represent the phenomena they observed; a typical table is
shown below:
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In this case, the student was able to coordinate the growth of the length and the area
of the rectangle as the width grew in 1-cm increments. He also identified the amount
by which the area increased for each additional centimeter in width, as well as their
differences.

I introduced a standard far-prediction problem to encourage a shift from the co-
variation approach to the development of a direct functional relationship between
height and area:

Problem 6 Here is a table for the height versus the area of a rectangle that is grow-
ing in proportion to itself. What will the area be when the rectangle is 82 units high?

Fig. 12 Table of height/area
values for a growing rectangle

The students’ initial entry into the problem was from a covariation perspective, in
which they coordinated the growth of three quantities: height, length, and area. Each
student introduced a third column, length, and noticed that the length increased by
4.5 units each time the height increased by 1 unit:

Fig, 13 Student’s table with FaY
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One student, Ariel, stated that the area of a rectangle 82 units high would be 30,258
square units. Ariel explained that she found 30,258 by multiplying 82 by 4.5 units to
get the corresponding length of 369 units. The area would then be 82 units multiplied
by 369 units. Jim relied on his image of the rectangle and the way in which it grew
to explain Ariel’s reasoning to the class:

J: Well that was the length, the 369, so she has to do height times length equals
area. So she had to multiply [the 369 by 82] again.
AE: 1see. So how did you know to multiply 82 by 4.5 units to get the length?
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T: Because, that’s how much the length was going up by every time. So if you,
like, made a square, I mean, or a rectangle, and then you moved up I unit, it
would go over 4.5 for every time you go up the height 1.

At this stage, the students’ thinking relied on an image of the manner in which the
rectangle grew in order to coordinate the growth between the height and the length.
This supported their understanding from a covariational view, and they capitalized
on their understanding of the coordinated growth of the height and the length to de-
termine the area of the rectangle for a large height. However, the students’ images
of the nature of the rectangle’s growth were limited to cases in which the rectangles
grew in discrete whole-unit increments, typically increments in which the length or
the height increased by 1 unit. Simplifying the nature of the growth initially helped
the students coordinate the multiple quantities involved (length, width, area, and in-
creases in each of these quantities), but this was a strategy that would ultimately
need to be generalized to encompass the notion of non-unit increments and contin-
uous growth.

In an attempt to encourage the students to think about a direct relationship be-
tween the height and the area, I then asked them to compute the area when the height
was n units. They quickly produced the formula *“area = 4.5n2”, and Jim explained
his reasoning to another student, Bianca:

I: Iput n times 4.5 times n.

B: How did you figure it out?

J: Well, n can be any value...

B: Right.

T: Times 4.5 is your length, Times n again because I do height again, is your area.

Jim simply extended his previous reasoning to determine that the length of a rect-
angle n units high would be 4.5x, and thus the area must be the height times the
length, or n(4.5n).

The students continued to work with far prediction problems, and the introduc-
tion of tables that were not well ordered encouraged the students to conceptualize
the (unknown) length in terms of its relationship between the height and the area.
Unable to identify the rate of growth of the length, the students instead began to
develop third length columns by dividing the area by the height. The inclusion of
the length columns also encouraged students to make more explicit connections be-
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tween the length/height ratio and the “g¢” in y = ax?, as seen below:
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One student, Tai, explained, “I came up with this equation [area = 1.542]. It’s like,
the number in front of the height squared, is figured out by the area divided by the
height squared.” Daeshim added, “The number is what you have to multiply the
height by to get the length. And then height times length is the area, so that is why
it's squared.” The norm that students must explain how their equations were related
to the quantities in the rectangle supported justifications such as Daeshim’s, and
encouraged additional connections between features of the equations (such as the
value of “a” in y = ax?) and properties of the growing rectangle.

Although the shift from a covariation approach to a correspondence approach was
gradual, it was aided by the students” abilities to make direct connections to their im-
ages of growing rectangles and their abilities to coordinate relationships between the
quantities length, width, and area. Moreover, their reliance on these constructed re-
lationships enabled the students to develop a flexible view of the quadratic function,
one in which they frequently shifted between the covariation and correspondence
views. In particular, these flexible views helped the students make connections be-
tween the value of “a” in y = ax? and the second differences for area, which the
students termed the “difference in the rate of growth of the area”, or the DiRoG for
area when the width increased in uniform amounts. The students created multiple
generalizations about the DiRoG of the area, including the notion that the DiRoG
(for tables in which the rectangle’s height increases by 1 unit) is twice the value of
“g” in y = ax?, the DiRoG is twice the area of the rectangle when the height is 1
unit, and the DiRoG is the value of the rectangle’s length when the height is 1 unit.

The students experienced little difficulty when they transitioned to tables that
were not well ordered for a number of reasons. First, they were accustomed to pic-
turing the rectangle that was represented in the table’s values, so every pattern they
developed was solidly grounded in the imagery of length, height, and area and their
relationships, This imagery supported the students’ abilities to create functional re-
lationships between height and area. In addition, the students had spent so much
time focusing on what the DiRoG meant for the rectangle’s area in relationship to
the equations they built, they became accustomed to moving seamlessly between re-
cursive and functional representations. Because they kept discussing what the values
represented in terms of length and area, the students were encouraged to represent
those relationships more generally in algebraic forms.

Flexibility Across Forms

Smith and Thompson (2007) remind us that one role of quantitative reasoning is to
support thinking that is flexible and general in character. Students in the linear and
quadratic functions teaching experiments created many tables and algebraic repre-
sentations to describe the same phenomena, and could move between them. But
what about graphical representations? In both cases, I deliberately refrained from
introducing graphs until the students had developed a meaningful understanding of
the relationships represented by the graphs. Once that foundation was in place, they
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began to create their own graphs as a way to justify their conclusions about the
quantitative relationships they developed.

For instance, the linear functions students encountered a scenario in which a char-
acter walked 5 cm in 4 seconds. They created multiple equivalent ratios to represent
the character’s speed, and represented these ratios in tables of data. When asked to
explain why a speed of 15 cm in 12 seconds was the same as 5 cm in 4 seconds,

Timothy asked if he could create a graph:
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Fig. 15 Timothy’s graph of same-speed values

Timothy’s partner, Dora, wrote the equation y = 4/5x and explained that the x-axis
represented centimeters and the y-axis represented seconds. Timothy explained that
he could put a line through the points, if they were appropriately exact:

T: You could puta line there. But it’s not a good graph so it’s not going to make
a straight line.
AE: Okay. You found that the slope of the line was 4/5. What does that mean?
T: Whatever x is, y is 4/5 of x. The slope means that whatever x goes up by, 4/5
of that is how much y goes up by.
AE: And what does 4/5 have to do with the speed of the clown?
T: It’s going basically 4/5 of a second per centimeter.
AE: Now why is the fact that the clown’s speed is 4/5 of a second per 1 centimeter,
why is that the same as the slope being 4/57 What's the connection?
T: Because for every centimeter it goes, it’s going like 4, er, yeah, 4/3 of a second
I think. Every centimeter goes...yeah. Every centimeter it’s going 4/5 of a
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second. The slope is 4/5 because for every centimeter that you add, you add
4/5 seconds.

Timothy’s understanding of the speed situation, his familiarity with creating
same-ratio tables, and his ease with representing these phenomena algebraically all
supported his ability to create and make quantitative sense of a linear graph. In addi-
tion, Timothy was able to imagine the scenario from a correspondence perspective
(“Whatever x is, y is 4/5 of x”) as well as from a covariation perspective (“For
every centimeter you add, you add 4/5 seconds™). Each of these views, as well as
Timothy’s flexibility with moving across views, was enabled by his understanding
of the relationship between the quantities centimeters and seconds to create the phe-
nomenon of constant speed.

The quadratic functions students began to create graphs in the third week of
the teaching experiment and ultimately graphed both y = ax?and y=ax®+c¢
situations. Before they produced any graphs, they made predictions about what a
graph of the growing rectangle situation might look like:

AE: If you were to graph this one [comparing the height to the area of a square],
what do you think the graph would look like?
B: A curve.
S: Ithought it would be straight because every time the area’s going up by 2.
AE: So what do you think about what Sara’s saying? She’s saying every time it
would go up by 2 so it would be straight.
B: Well, the area’s going up by 2 in between every time it’s going up by a different
number, so that makes me think it's going up in a curve because it’s, like,
staired.

When the students ultimately created graphs, they showed the first and second dif-
ferences for the area in order to connect their prior emphasis on differences to the
graphical representation, and to explain why the graph must be curved instead of
straight. For instance, Daeshim’s graph identified the constant second differences
as 1.5 cm? when the height increased in 0.5 cm increments, and he showed this
by calculating the increase in area for each 0.5-cm increase in the height, and then
showing the difference between each successive area increase to be 1.5:
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The students’ quantitative understanding of the rectangle situation enabled them
to make accurate predictions about the nature of graphs and interpret new graphs
by thinking about the value of each point in relationship to a hypothetical rectangle.
The students correctly predicted, for instange, that the parabola for y = 5x? would
be narrower than the parabola for y = 0.5x2, because the former represented a larger
rectangle that was adding much more area with each height increase than the latter.
They also made sense of graphs with non-zero y-intercepts by imagining rectangles
with a constant number of extra square units tacked on. While students’ later forays
into features of graphs and families of functions will likely rely less on quantitative
images, reasoning directly with the quantities can provide a critical sense-making
foundation for their initial investigations of graphical representations.

In both the linear and the quadratic case, the students made use of different rep-
resentations (tabular, algebraic, and graphical) to describe and make sense of the
quantitative situations involving gear ratios, speed, or growing rectangles. Since
each representation was a way of describing the quantitative phenomena, rather than
an instructor-introduced artifact divorced from any referents, the connections across
the representations were natural ones that enabled seamless transitions. Depending
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on the questions at hand, the students made use of the type of representation that
they found most helpful for describing quantitative phenomena.

Fostering a Focus on Quantities

The situations with gear ratios and growing rectangles were optimal contexts for
exploring linear and quadratic functions because the phenomena were precisely,
rather than approximately, linear and quadratic. Some problem situations involve
contexts in which the data are not exact; for instance, students may gather real-
world quadratic data from rolling balls down inclined planes, or explore contrived
problems presenting supposedly linear relationships between the number of surf
boards sold and the temperature for a given day. The contrived nature of some con-
texts may interfere with students’ natural sense making, and realistic situations with
messy data may prevent students from directly manipulating quantities in order to
form the necessary conceptual relationships that embody the phenomenon in ques-
tion (Ellis 2007). While approximate or messy data are fully appropriate data to
investigate, particularly in terms of highlighting the power of mathematical models
for making sense of real-world situations, these contexts may not be ideal for middle
school students who are exploring functional relationships for the first time.

Instead students will benefit from opportunities to explore the nature of linear (or
quadratic) relationships by directly manipulating quantities: for instance, examining
how changing time or distance independently affects the emergent quantity speed,
creating two-number ratios and then iterating them and partitioning them to form
equivalent ratios, and otherwise investigating how the constituent quantities affect
the functional relationship at hand. The students in the linear and quadratic func-
tions teaching experiments had opportunities to manipulate and explore physical
artifacts (for the gears) or run experiments with computer software (for the speed
situation and the growing rectangles situation). However, even in cases in which
physical artifacts or computer simulations are not available, students can investigate
how changing a particular quantity can affect the others related to it. Teachers may
have to take care to support students’ engagement with these problems, particularly
because the tendency to extract numbers and focus on pattern-seeking activities ap-
pears to be a strong pull for middle-school students. In these cases an instructor’s
intervention can draw students’ attention back to the quantitative referents of num-
. bers and patterns. For instance, if a student describes a pattern in a table such as
“sach time x goes up by 4, y goes up by 57, a teacher could ask students to describe
what this means in terms of the gears rotating.

Students’ unique interactions with and interpretations of real-world situations
remind us that these contexts are not a panacea. Introducing a quantitatively-rich
situation does not guarantee that students will build quantitative relationships; a
quantity is, after all, a person’s conception of a measurable aitribute, rather than the
attribute itself. Students may focus on any number of features in a problem situation,
and this focus may not always include productive relationships between quantities.
Therefore teachers play an important role in shaping a classroom discussion, posing
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appropriate questions, inserting new information, and otherwise guiding students
to develop the quantitative operations that will support the formation of functional
relationships. A common refrain in the quadratic functions teaching experiment was
“what does this mean in terms of the rectangle?” because this reminder encouraged
the students to develop pattern generalizations that were meaningfully grounded
rather than arbitrary and unproductive.

Students’ initial learning of functions is particularly critical because it sets the
foundation for future work in algebra at the high school level and beyond. Support-
ing students’ abilities to make sense of functions from a quantitatively meaningful
stance can foster a function understanding that is productive, grounded, and flexible
in nature. A focus on numbers, relationships, and functional behaviors in absence
of quantitative referents is certainly appropriate for mathematics students and, in
the long term, necessary as students explore increasingly abstract ideas. However, I
argue that for middie school students’ first introduction to functional relationships,
a grounding in quantities, relationships, and meaningful situations can ultimately
support the eventual shift to more formal algebraic practices in high school.
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Representational Competence and Algebraic
Modeling

Andrew izsék

Abstract This chapter reviews some key empirical results and theoretical perspec-
tives found in the past three decades of research on students’ capacities to reason
with algebraic and graphical representations of functions. It then discusses two re-
cent advances in our understanding of students’ developing capacities to use in-
scriptions for representing situations and solving problems. The first advance is the
insight that students have criteria that they use for evaluating external representa-
tions commonly found in algebra, such as algebraic and graphical representations.
Such criteria are important because they play a central role in learning. The sec-
ond advance has to do with recognizing the importance of adaptive interpretation,
which refers to ways in which students must coordinate shifts in their perspective
on external representations with corresponding shifts in their perspective on prob-
lem situations. The term adaptive highlights the context sensitive ways in which
students must learn to interpret external representations. The chapter concludes
with implications of these two advances for future research and algebra instruc-
tion.

Gaining insight into how students learn to reason with external representations, or
inscriptions, has been a central challenge in mathematics education research for
several decades. Research on algebra and functions has grappled with this challenge
extensively, perhaps more so than research on the teaching and learning of any other
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Foreword

Early Algebraization: A Global Dialogue from Multiple Perspectives is the second
monograph in the Advances in Mathematics Education (AiME) series launched by
Springer in 2009. The book follows in the tradition of Theories of Mathematics
Education (Sriraman and English, monograph 1), stemming from a previous ZDM
issues on early algebraic thinking (vol. 37, no. 1, 2005 and vol. 40, no. 1, 2008).
That is, although it uses the previous issues as a basis for the current monograph, the
monograph itself goes beyond simply revisiting the past. It conveys the present state
of the art on existing research on early algebraization since 2005. The eight previous
articles (five from vol. 37 and 3 from vol. 40) have been reworked and updated
in addition to 18 new chapters from researchers involved in early algebraization
research projects in different parts of the world, which include 4 commentaries on
the scope of the research.

The book editors Jinfa Cai and Eric Knuth have compiled the book in three
substantial parts between the bookends of a general introduction and an over-
all commentary addressing perspectives for research and teaching in this do-
main of inquiry. These three parts of the book examine curricular, cognitive
and instructional components of early algebraization. Unlike the ZDM issue
which was predominantly articles from researchers based in North America, this
book contains ongoing research from different parts of the world, and initi-
ates a global conversation on where the community stands in its research find-
ings.

AIME is distinct from other mathematics education series because it attempts
to draw the reader into a conversation, and be dialogic in its presentation. This is
the purpose of soliciting commentaries from those that are able to synthesize ideas,
expose them in a larger light of what is known, and directions in which they can
be further pushed. This book continues in this tradition and attempts to draw us
into the issues of understanding, implementing and assessing early algebraization in
projects and curricula in different parts of the world. We hope this monograph is of
value to the research community of mathematics educators interested in the role and
significance of early algebraic thinking within the current research architecture. We



