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Abstract
This paper introduces a new mode of variational and covariational reasoning, which we
call scaling-continuous reasoning. Scaling-continuous reasoning entails (a) imagining a
variable taking on all values on the continuum at any scale, (b) understanding that there is
no scale at which the continuum becomes discrete, and (c) re-scaling to any arbitrarily
small increment for x and coordinating that scaling with associated values for y. Based on
the analysis of a 15-h teaching experiment with two 12-year-old pre-algebra students, we
present evidence of scaling-continuous reasoning and identify two implications for
students’ understanding of rates of change: seeing constant rate as an equivalence class
of ratios, and viewing instantaneous rate of change as a potential rate. We argue that
scaling-continuous reasoning can support a robust understanding of function and rates of
change.

Keywords Student reasoning . Algebra .Middle school . Teaching experiments

1 Introduction: the importance of variation for function understanding

Functions and relations comprise a critical aspect of algebra, with recommendations for
supporting students’ algebraic reasoning advocating the introduction of functional relation-
ships in the middle grades (e.g., National Governor’s Association Center for Best Practices,
2010; U.K. Department for Education, 2009). Despite the importance of functional reasoning,
however, research indicates that students exit secondary school viewing functions in terms of
symbolic manipulations rather than as a model of dynamic situations (Stephens, Ellis, Blanton,
& Brizuela, 2017). These findings highlight the need to better support students’ emerging
function concepts, particularly in terms of understanding functions as representations of
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variation. Currently, typical curricular and pedagogical approaches rely on the correspondence
view, which treats a function as a fixed relationship between the members of two sets. This
static treatment is widespread in secondary instruction; for instance, Thompson and Carlson
(2017) reviewed 17 US secondary textbooks, ranging from Algebra I through Precalculus, and
found that all relied on a correspondence definition of function.

A contrasting approach to supporting students’ functional thinking is an emphasis on
variational and covariational reasoning (Thompson & Carlson, 2017). Researchers argue that
attending to and coordinating changes in quantities that continuously covary is critical for
students’ development of a robust understanding of function, constant and varying rates of
change, and the foundational ideas of calculus (e.g., Carlson, Smith, & Persson, 2003).
Further, situating functional exploration within contexts leveraging covarying quantities that
enable visualization, manipulation, and prediction has been found to foster students’ abilities to
reason flexibly about dynamically changing events (Castillo-Garsow, Johnson, & Moore,
2013). Covariation is an examination of coordinated changes between x- and y-values
(Confrey & Smith, 1995; Saldanha & Thompson, 1998). Confrey and Smith (1995), for
instance, defined a covariation approach as moving operationally from ym to ym+1 in coordi-
nation with movement from xm to xm+1. Saldanha and Thompson (1998) then extended this
idea to characterize covariation as imagining two quantities changing together, which, in turn,
is dependent on the ability to envision each quantity varying. From this perspective, covari-
ation is the coupling of two quantities, which enables tracking either quantity’s value with an
explicit understanding that at every instance, the associated quantity has a corresponding value
(Saldanha & Thompson, 1998).

In this paper, we introduce a new mode of variational and covariational reasoning, which
we call scaling-continuous covariation. Scaling-continuous covariation entails imagining the
continuum as infinitely zoomable, coupled with the understanding that one can re-scale to any
arbitrarily small increment for x and coordinate that scaling with associated values for y. This
paper reports on a study addressing the following research questions: (a) How does scaling-
continuous reasoning differ from prior examples of covariational reasoning? (b) What are the
implications of scaling-continuous reasoning for students’ understanding of functions and rates
of change? In the findings below, we argue that scaling-continuous reasoning can support
productive ways of thinking about key function ideas, including constant and instantaneous
rates of change.

2 Theoretical framework and relevant literature: rate reasoning
and covariational reasoning

Stroup (2002) introduced the term qualitative calculus, which entails an informal introduction
of calculus concepts, such as rates of change, to students in upper elementary and middle
school. Given that calculus is a dynamic discipline (Tall, 2009), an approach emphasizing rate
reasoning can be fruitful for supporting students’ emerging function understanding (Carlson
et al., 2003). This can be especially important given the prevalence in many European
countries of introducing calculus in secondary school (Artigue, 2002; Maschietto, 2004). Rate
of change, however, remains a difficult concept for both secondary students (e.g., Herbert &
Pierce, 2012) and university students (e.g., Ubuz, 2007). There is some evidence that situating
students’ early exposure to function and rate reasoning in varying (rather than constant) rate
contexts can be beneficial (e.g., Herbert & Pierce, 2012; Stroup, 2002). Further, emphasizing
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covarying quantities in rate situations can support students’ understanding of rate as a
relationship, rather than as the outcome of a calculation (Herbert & Pierce, 2012). Conse-
quently, we chose to introduce dynamic contexts in which students could explore constant and
varying rates of change in order not only to foster robust rate conceptions, but also to support
an understanding of continuous function concepts.

Representing continuous relationships is challenging for students, and they often resort to
discrete graphs to depict continuous phenomena (de Beer, Gravemeijer, & van Eijck, 2015). It
is also not uncommon to approach continuous functions additively by comparing the changes
in the output variable with respect to equal increments of the input variable (Kertil, Erbas, &
Cetinkaya, 2019). However, there have been reports of successes in students moving from
discrete to continuous representations (Yerushalmy & Swidan, 2012). For instance, de Beer
et al. (2015) found that 5th-grade students could bootstrap their discrete reasoning about speed
to make sense of continuous graphs and, ultimately, reason qualitatively about instantaneous
speed. In order to make sense of students’ rate reasoning for continuous functions, we
leveraged ideas from Castillo-Garsow’s (2012) and Thompson and Carlson’s (2017)
covariational reasoning frameworks, which we detail below.

2.1 Covariational reasoning frameworks

Thompson and Carlson (2017) provided an overview of research on student reasoning with
continuous functions that synthesizes the work of a variety of researchers over the past several
decades (e.g., Carlson et al., 2003; Castillo-Garsow, 2012; Castillo-Garsow et al., 2013;
Saldanha & Thompson, 1998; Thompson & Carlson, 2017). Our work here is situated in
the context of this body of research and builds upon these frameworks.

Chunky-continuous variation and covariation Castillo-Garsow (2012) distinguished be-
tween two different images of change as students reason about variation: chunky and smooth
reasoning. According to Castillo-Garsow et al. (2013), a chunky image of variation has two
distinguishing features: “A unit chunk whose repetition makes up the variation, and a lack of
image of variation within the unit chunk” (p. 33). One generates change by sequencing equal-
sized chunks and measures change by counting the number of elapsed chunks. Castillo-
Garsow and colleagues emphasized that a key aspect of chunky thinking is that one thinks
in intervals, but not about intervals; intermediate values within a chunk may exist, but do not
receive explicit attention.

Thompson and Carlson (2017) called this chunky-continuous variation: change occurs in
completed chunks, but there is no clear image of how variation occurs within the chunk. For
chunky-continuous covariation, the student imagines corresponding chunks in the other
covarying quantity as well. When using chunky-continuous reasoning, a student may be able
to reason with different chunk sizes; a given chunk is not necessarily indivisible. Rather, one
chooses a chunk size and measures change in units of that chunk.

Smooth-continuous variation and covariation Smooth variation relies on an image of
change experientially as it occurs (Castillo-Garsow et al., 2013); it is imagined in the present
tense. In contrast, chunky thinking is in the past tense, imagining that the change has already
happened and is now being analyzed. These authors add, “Smooth images of change are not
the same as chunky images of change cut up really small. Smooth images of change involve an
entirely different conceptualization of variation” (p. 34). The difference between smooth and
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chunky reasoning is like the difference between the experience of watching a movie and that of
the movie-maker editing a sequence of already-filmed frames.

Thompson and Carlson (2017) described smooth-continuous variation in terms of
projecting an image of one’s own experiential time to a time period within the mathematical
context. One imagines a value varying as its magnitude increases in bits while simultaneously
anticipating smooth variation within each bit, passing through all of the intermediate values
within any given bit. Smooth-continuous covariation then involves smooth variation in both
quantities simultaneously. Furthermore, one can choose to consider change by intervals “while
anticipating that within each interval the variable’s value varies smoothly and continuously”
(2017, p. 430). Thompson and Carlson therefore consider smooth-continuous reasoning to be
more powerful than chunky-continuous reasoning, in that a student who can use smooth-
continuous reasoning can also reason about change in chunks if needed, while a student who
can use chunky-continuous reasoning may not be able to reason smoothly. Castillo-Garsow
et al. (2013) make no such claim, and they treat chunky thinking and smooth thinking as
different types of imagery between which a student might switch back and forth.

Both accounts of smooth reasoning agree that it requires reasoning in terms of motion,
always entailing imagining “something moving” (Thompson & Carlson, 2017, p. 430). A
varying quantity is imagined as being tacitly parameterized by conceptual time. Thompson and
Carlson (2017) note that this is the same imagery Isaac Newton appealed to when he defined a
variable quantity to be a “fluent” that depended on and changed with time.

2.2 Scaling-continuous variation and covariation

We now define a new image of change: scaling-continuous variational and covariational
reasoning. The fundamental image involved in this type of reasoning is zooming or scaling.
Scaling-continuous variation entails imagining that a variable takes on all values in any
continuum of values, and assuming this will always be the case no matter how much you
zoom in. The image is that the continuum is infinitely “zoomable,” in that the process of
zooming never reveals discrete atoms, holes, or values that the variable skips. The continuum
is imagined as always being a continuum at any scale.

Scaling-continuous covariational reasoning imagines scaling to see any arbitrarily small
continuum of values for one variable, and that this increment will always correspond to a
continuum of associated values for the other variable. For instance, one can imagine a window
of x-values growing, and the corresponding window of y-values simultaneously growing as a
correspondence between increments of x and y.

Scaling-continuous reasoning does not require an image of motion or assume an underlying
time parameter. In this way, it differs from smooth reasoning and is similar to chunky
reasoning. Like chunky reasoning, it also treats change as having already occurred; reasoning
about change is not grounded in the reasoner’s experiential time. Yet scaling-continuous
reasoning is unlike chunky reasoning in several ways. First, its fundamental image is of
zooming, not of traversing an interval of change using a chosen chunk. Second, although a
person using chunky reasoning does not attend to variation within a chunk, a person using
scaling reasoning assumes there is always a correspondence between the values of the two
variables at every scale within every chunk.

The third difference is the different form of generalizing each type of reasoning affords.
Chunky reasoning entails imagining movement across a domain in chunks, so it can afford a
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generalization of some feature of the covariation across chunks. This could allow a student to
imagine that feature being present in every chunk of the situation’s domain. On the other hand,
scaling-continuous covariational reasoning employs the image of repeated zooming or
rescaling, which could enable one to generalize a feature of the covariation across all scales,
including, potentially, the infinitesimal scale.

To illustrate this idea of generalizing across scale, we appeal to G. W. Leibniz’ accounts of
covariation in calculus. There are some notable parallels between scaling-continuous reasoning
and the imagery G. W. Leibniz used when writing about infinitesimal calculus. We do not
wish to speculate about what Leibniz thought, but rather to use Leibniz’ imagery to motivate
the idea of how scaling-continuous reasoning affords generalizing across scale.

Just as Newton’s imagery of fluents has parallels with smooth reasoning, Leibniz’ imagery
of covariation has parallels with scaling-continuous reasoning. Rather than treating two
covarying quantities as flowing simultaneously, Leibniz typically attended to the correspon-
dence between increments of the two quantities, particularly infinitesimal increments (Bos,
1974). He distinguished among types of these increments based on their relative scales. For
instance, for differential and integral calculus, Leibniz used infinitesimal increments. Starting
with an algebraic relationship between the values of two variable quantities x and y, his
differential calculus was then a way to derive a new equation describing the relationship
between infinitesimal increments of the two quantities, dx and dy.

This idea can be illustrated by Leibniz’ summary of the product rule:

d(xy) is the same as the difference between two adjacent xy, of which let one be xy, the
other (x + dx)(y + dy). Then, d(xy) = (x + dx)(y + dy) − xy, or xdy + ydx + dxdy, and this
will be equal to xdy + ydx if the quantity dxdy is omitted, which is infinitely small with
respect to the remaining quantities, because dx and dy are supposedly infinitely small
(namely if the term of the sequence represents lines, increasing or decreasing continually
by minima). (From Leibniz’ Elementa, quoted in Bos, 1974, p. 16.)

First, we note the image of correspondence between the bits of two covarying quantities.
Leibniz described a new variable quantity, xy, and he then sought to derive an equation
describing the correspondence between an infinitesimal bit of this quantity, d(xy), and infin-
itesimal bits (dx and dy) of the other two quantities x and y. Nothing about these increments is
moving or changing, although their values depended upon where on the curve they were taken.
Although Leibniz did not appeal to motion, the idea of covariation here entails the notion that
every increment of one quantity, no matter how small, corresponds to an increment of another
covarying quantity.

The second image we note is that of scaling. In the above example, Leibniz dismissed the
quantity dxdy because it is infinitely small even in comparison with other infinitely small
quantities such as dx and xdy. Leibniz developed a scheme of orders of the infinitesimal and
the infinite in order to systematize this idea of scaling. At the finite scale, infinitesimals such as
dy are negligible, but at the first-order infinitesimal scale, they become significant, with
second-order differences still negligible. Imagining correspondence at these different scales
was crucial to a coherent system of calculus for Leibniz. At each such scale, the continuum
was still continuous (Bos, 1974). The image of scaling can afford infinitesimal increments by
generalizing features from finite increments in order to envision infinitesimal increments. One
could imagine a process of infinite zooming, with the reification of such a process supporting
an image of an increment at the infinitesimal scale that inherits properties from the finite cases
(Ely, 2011).
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One of the properties that can be projected onto infinitesimal increments is that of local
straightness. For instance, Leibniz spoke of a curve as a polygon with infinitesimal sides, so
that a difference triangle can be imagined at the infinitesimal scale with a straight hypotenuse
of slope dy/dx. Scaling-continuous reasoning could afford, but by no means compels, this
generalization of straightness to the infinitesimal scale. Differentiable curves appear straighter
and straighter as you zoom in on them more and more. By attending to this property as one
generalizes across scale, one might project onto the infinitesimal scale the image of local
straightness. This is precisely the type of generalization Tall (1997) and Maschietto (2004)
have sought to promote in their approaches to calculus through local linearity and the global/
local game, respectively. Tall (2009), for instance, relied on the notion that a differentiable
graph under infinite magnification is a straight line. If one zooms in dynamically on a graph
with very small values of dx and dy, then the magnified graph looks like a straight line so that
the graph and its tangent become indistinguishable. Both Tall (2009) and Maschietto (2004)
leveraged the notions of embodiment and zooming to foster a shift from a global to a local
perspective. These approaches, therefore, employ scaling-continuous imagery, which could
afford the image of infinitesimal increments.

As illustrated in the “Results” section, this image of local straightness is not the only image
that can be generalized across scale. If a student attends to different elements of the situation of
covariation, then scaling-continuous reasoning might instead afford the projection of the image
that a curve is always curved, even at infinitesimal scales. Scaling-continuous reasoning
affords generalizing across scale, but does not by itself dictate what properties are generalized.

3 Methods

The study reported in this paper was part of a larger 3-year project aimed at understanding
students’ generalization processes in algebra, advanced algebra, and combinatorics. As part of
this project, we implemented an exploratory teaching experiment in order to investigate
students’ generalizations of linear, quadratic, and higher-order polynomial functions from a
rate-of-change perspective. The results of this study then supported the design of an instruc-
tional sequence for a series of larger-scale design experiments on function. The findings in this
paper are from the first teaching experiment.

3.1 Participants and the teaching experiment

We conducted a 10-day, 15-h videoed teaching experiment (Steffe & Thompson, 2000) with
two 12-year-old students in general mathematics (neither had yet taken algebra). We assigned
gender-preserving pseudonyms to each student, Wesley and Olivia. The first author was the
teacher-researcher, and a project member observed each session, which lasted between 1 and
2 h. The project team met daily to debrief.

We developed tasks to support a conception of linear growth as a representation of a
constant rate of change and quadratic growth as a representation of a constantly changing rate
of change. The tasks emphasized these ideas within the contexts of speed and area. The area
tasks presented “growing rectangles,” “growing stair steps,” and “growing triangles” via
dynamic geometry software, in which the students could manipulate a figure by extending
the length and observing the associated growth in area (Fig. 1). Table 1 provides the
mathematical topics and contexts addressed each day during the teaching experiment.
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The researchers’ goals informed the design and sequencing of the tasks. One goal was to
create opportunities for students to reason about rates of change in progressively more
sophisticated ways. The growing rectangle task provided an opportunity to establish that as
the length and area grow together, the rate of change is fixed regardless of increment size. The
stair step task had a fixed rate of change within each stair but increased by the same amount
from stair to stair. The intent was to help the students begin to form the language and tools to
model situations with non-constant rates of change.

The growing triangle task models quadratic growth. In this case, there are no periods of
constant rate of change that can be calculated by dividing the displacement in area by the
displacement in length. One can only calculate the average rate of change on that interval. We
anticipated that students would partition the triangle into vertical columns of equal increments
and reason about how the rates of change in area increased from one interval to the next. After
working with different increments and varying their width, we hoped to encourage the students
to begin reasoning informally about instantaneous rates of change by anticipating a rudimen-
tary limiting process. Scaling-continuous reasoning emerged as a way of viewing functions
that was adapted in part to these instructional materials and objectives.

3.2 Analysis

We employed retrospective analysis (Steffe & Thompson, 2000) in order to characterize the
students’ conceptions throughout the teaching experiment. We transcribed teaching session
and then produced a set of enhanced transcripts that included all verbal utterances, images of
students’ work, descriptions of relevant gestures, and other non-verbal actions. Relying on the

Fig. 1 Growing rectangle, stair step, and triangle tasks

Table 1 Overview of the teaching experiment unit

Day Mathematical topics Contexts

1 Linear growth, average rate of change Speed
2 Linear growth, average rate of change Speed, growing rectangles
3 Linear and piecewise linear growth Growing rectangles, stair steps
4 Quadratic growth, average rate of change Growing triangles
5 Quadratic growth, identifying constantly changing rates of

change
Growing triangles

6 Quadratic growth, instantaneous rates of change Growing triangles, trapezoids
7 Instantaneous rates of change Growing rectangle, triangles,

trapezoids
8 Cubic growth Growing cubes and rectangular prisms
9 Cubic growth Growing cubes and rectangular prisms
10 Higher-order polynomial functions Growing 4D and n-dimensional figures
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constant comparative method (Strauss & Corbin, 1990), we then analyzed the data in order to
identify (a) students’ forms of covariational reasoning and (b) students’ conceptions of
constant and changing rates of change. For the first round of analysis, we drew on Thompson
and Carlson’s (2017) framework of variational and covariational reasoning. We coded to infer
categories of variation/covariation based on students’ talk, figures, gestures, and task re-
sponses. We also developed emergent codes for students’ understandings of constant, chang-
ing, and instantaneous rates of change. The first round then guided subsequent rounds of
analysis in which the project team met to refine and adjust the codes in relation to one another.
This iterative process continued until no new codes emerged. The final round of analysis was
descriptive and supported the development of an emergent set of relationships between the
students’ covariational reasoning and their conceptions of constant, changing, and instanta-
neous rates of change.

4 Results

We focus on the distinction between two forms of reasoning in the teaching experiment,
chunky-continuous and scaling-continuous covariation. Although these were not the only
forms of reasoning we observed, they were the most prevalent forms that persisted throughout
the teaching experiment. Further, we highlight chunky-continuous and scaling-continuous
reasoning as a way to address the unique characteristics and affordances of scaling-
continuous covariation as distinct from chunky-continuous covariation. In the sections below,
we introduce evidence of the two forms of reasoning and then discuss the ways in which
scaling-continuous covariation afforded generalizations about constant and instantaneous rates
of change.

4.1 Chunky-continuous reasoning

On the fourth day of the teaching experiment, the students watched a video of a triangular
region that grew in a smooth, continuous motion from left to right (Fig. 2a). The teacher-
researcher (TR) asked the students to construct a graph to show the relationship between the
total accumulated area and the length swept. Wesley explained his graph (Fig. 2b) by
discussing segments of inches: “It’s curved because as the length keeps going, for every inch
it covers more area.” Chunky-continuous covariation entails imagining each quantity’s value
changing by intervals of a fixed size. A student reasoning in this manner could re-chunk to
different sizes, but would still lack an image of variation within a given chunk. In this case,
Wesley considered amounts of length in 1-in. chunks, and he anticipated an amount of growth
in area associated with each chunk. However, Wesley did not show evidence of considering
how the length and area values accumulated together within each chunk.

In explaining the second graphWesley produced on graph paper (Fig. 2c), he noted, “every inch
it goes, it, like, it goes, it covers more area for that inch so it keeps getting steeper.” The teacher-
researcher asked Wesley whether the segments connecting the points were straight or curved:

W: I think they’d be a straight line too.
TR: Okay. When you say every inch it goes, it covers more area, is that true for only
inches or is it true for any sort of increase?
W: Any sort of increase I think.
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Wesley stated that his image of growth would hold for “any sort of increase,” suggesting
that he may have been able to understand that the growth phenomenon was not dependent on
the particular intervals he chose. The straight-line segments, however, suggest that any values
occurring within chunks were tacit. A student reasoning with smooth-continuous covariation
might instead create a curved graph that would reflect an image of continuous coordinated
changes in x and y, understanding that for any arbitrary increment, both quantities will covary
with smooth variation, moving through all values within the increment.

Olivia also showed evidence of chunky-continuous reasoning. When the teacher-
researcher presented a growing triangle with a height-to-length ratio of 2:5, she invited
the students to graph its area versus length. Olivia produced a piecewise linear graph
with 1-in. increments for length, stating, “each line between each increment is just
getting steeper”:

O: If you made the increments even smaller, like into 0.1 as your first point, then I think
it’d be, all the little lines together I think they’d make a very subtle curve, but relatively
straight. So when I did it with the increments as 1, I see them as straight, but if they were
smaller they might look as if they were curved to make one big curve.

Olivia reasoned from one increment to the next, noting changes in steepness per line segment.
She also affirmed that using smaller increments would change the appearance of the graph, an
important hallmark of chunky-continuous covariation. When engaged in chunky reasoning, a
student can “re-chunk” to different increments, but those increments still have a measurable
length. Olivia reasoned that each interval was represented by a line segment; she could adjust
the size of her increments, but without altering her view of the nature of change within each
increment.

4.2 Scaling-continuous reasoning

On day 5 the teacher-researcher showed the students a video of another growing triangle, but
this time asked them to draw a sketch of the area-length graph simultaneously as the video
played. Wesley and Olivia worked together and both produced a smooth curve (Wesley’s is
shown in Fig. 3). The teacher-researcher asked Wesley why the graph was curved, in contrast
to his prior piecewise graphs:

Fig. 2 A static image of the triangle’s area swept from left to right (a) and Wesley’s graphs (b, c)
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W: Because, like, we were doing like big increments like here to like here (marks two
points on the curve) and if you kind of draw a straight line (draws a line between the
points) it’s like not exactly on the curve. But if you add the tiny increments, like in-
between, then it curves out.

The teacher-researcher then asked Wesley what the graph would look like between two
points that were “super close together”: would it be curved or straight? Wesley indicated that it
would be curved, explaining that “there’s tiny points in between those tiny points.” The
teacher-researcher further asked what would happen between two infinitesimally close points:

TR: What if I picked two points that were so close together that I couldn’t, you couldn’t
even see the difference? They were just so close together there’s like an infinitesimal
difference in between them. Would the connection between them be a straight line, or a
curve still?
O: Like the tiniest ones?
TR: Uh huh.
O: Then it would be a straight line.
TR: (Turns to Wesley). What do you think?
W: I think it’d be more of a curve because I think like it goes on infinitely, kind of, the
points. So if you zoomed in really close on those it would like look like that and then in
between those there’s still more points and it goes on forever.
TR: (Turns to Olivia). What do you think?
O: I still think it’d be a straight line because to me it's just a whole bunch of little straight
lines and so like to me it would eventually stop because you’re graphing the triangle’s,
like, placing.

One way to distinguish Olivia’s position from Wesley’s is through the lens of potential versus
actual infinity, a distinction that originates in Aristotle’s work. Potential infinity is character-
ized by an ongoing process repeated over and over without end (Núñez, 2003). Núñez
characterized this process by describing the action of imagining an unending sequence of

Fig. 3 Wesley’s smooth area-
length sketch reproduced from a
dynamic sketch

Ellis A. et al.96



regular polygons with more and more sides. The process, at any given stage, encompasses only
a finite number of repetitions. As a whole, however, it does not end and therefore lacks a final
resultant state. In contrast, actual infinity characterizes the infinite process as a realized thing.
Even though the process lacks an end, it is conceived as being completed and as having a final
resultant state. Following the same example, one can imagine an end at infinity “where the
entire infinite sequence does have a final resultant state, namely a circle that is conceived as a
regular polygon with an infinite number of sides” (p. 52, emphasis original). Similarly, one
could imagine a curved graph as having an infinite number of straight sides (as Leibniz did),
but, as we explain next, we do not believe that Olivia used actual infinity when imagining a
curve made up of “a whole bunch of little straight lines.”

Olivia could re-imagine the individual chunks to be smaller and smaller, but that process
did not have a realized end state whereby the smooth curve and the piecewise linear
approximation were one and the same. Olivia’s “bunch of little straight lines” were not
necessarily infinitely many straight lines; hence, Olivia noted that “it would eventually stop.”
In contrast, Wesley’s claim that the segment would be curved is consistent with a notion of
actual infinity. He spoke of the ability to zoom in such a way that it “goes on forever.”Wesley
could imagine points in between points, at any scale, even zooming in indefinitely. Wesley
consequently treated the quantities’ values as varying continuously, taking on all possible
values within the interval, even if the interval was infinitesimal. An always-curved curve is the
generalization Wesley made by employing actual infinity; he projected the property of
“curving over every interval” onto infinitesimal intervals. In contrast, one could instead
generalize, as did Leibniz, that the curve is made up of infinitely many straight lines.

The difference between Olivia and Wesley’s reasoning illustrates an important distinction
between scaling-continuous and chunky-continuous covariation. We also note that Wesley did
not use smooth-continuous covariation, because his language contained no references to
motion. His imagery was of scaling, not of a variable moving and tracing out values as it
moved.

4.3 Affordances of scaling-continuous reasoning

In the following sections, we outline a critical way in which scaling-continuous covariation
supported Wesley’s thinking about rates of change: Namely, he was able to construct a
multiplicative rate object by appealing to a figure’s height, for both constant and changing
rate of change figures. Below, we illustrate how this occurred in relation to Wesley’s scaling-
continuous covariational reasoning, and contrast his thinking with what is afforded by chunky-
continuous covariation.

Constant rates of change Both students could reason about length and area growing
together, but their conceptions of the ratio of area to length differed. Olivia conceived of this
relationship as a ratio, by considering an amount of elapsed area in comparison with an amount
of elapsed length. Wesley, in contrast, developed an understanding of the ratio as a rate of
change. For instance, on day 6, Olivia and Wesley examined a dynamic figure in which the
area was swept out under the curve in Fig. 4. The teacher-researcher positioned the mouse near
the left end, where the figure’s height is 3 cm. She asked the students, “At what rate is the area
increasing in this portion?”

Olivia answered, “The area, if you break it into parts, the area would just keep growing.”
She concluded that the rate would be “consistent” because the amount of area gained for each
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“part” was the same: Olivia compared the accumulated area across same-length increments. In
contrast, Wesley answered 3 cm2 per cm swept. He explicitly referenced both quantities, and
when justifying his answer, Wesley said, “Because the height is 3 centimeters.” As we detail
below, we believe that Wesley’s appeal to the height offers evidence that he conceived of the
ratio of 3 cm2 of area for 1 cm of length to be a rate.

Thompson and Thompson (1992) described a rate as a reflectively abstracted constant ratio.
A ratio is a multiplicative comparison of two quantities; a rate requires viewing two such
quantities as changing together, and treating the collection of equal ratios they generate as a
single quantity of its own. It symbolizes the ratio structure as a whole while giving prominence
to the constancy of the result of the multiplicative comparison. Wesley’s appeal to the height, a
single quantity, to justify the rate suggests that he saw it as a representation of the collection of
equal ratios. In order to understand the height as a rate, Wesley needed to have an image of
change such that 3 cm2:1 cm represented an equivalence class of ratios.

Wesley appealed to the height as a representation of the area’s rate on a number of other
tasks. For instance, later on the same day, the teacher-researcher adjusted Fig. 4, making the
rightmost region’s height 10 cm. Wesley said the area’s rate of change there was 10 cm2 per
cm, because its height was 10 cm. On yet another similar task where the rectangular region’s
height was 4 cm, Wesley justified the area’s growth rate to be 4 cm2 per cm because its height
was always 4 cm regardless of how much length had been swept out. Wesley generalized that
all of the ratios were instantiated in the same rectangle height, which did not depend on a
specified amount of length. This idea later supported his reasoning with instantaneous rate of
change, as we describe in the next section.

Wesley’s work on the 4-cm rectangle task also provided additional evidence that he had
constructed a rate. The teacher-researcher asked the students to create multiple ratios
representing a 4-cm2 per cm rate of change. Both students produced a number of equivalent
ratios. Olivia, however, could not produce ratios for length increments less than 1 cm, and she
did not perceive 8 cm2:2 cm to be the same as 4 cm2:1 cm. Olivia struggled to disentangle the
rate of growth of the area with the amount of length lapsed. Wesley generated ratios that
included length increments greater than and less than 1 cm, such as 12 cm2:3 cm, 8 cm2:2 cm,
2 cm2:0.5 cm, and 0.4 cm2:0.1 cm. More importantly, Wesley indicated that he would be able
to create an equivalent ratio given any elapsed length, even an unspecified length of x, simply
by multiplying it by 4. In contrast, in order to determine the area for an unspecified length
smaller than 1 cm, Olivia needed to first find an elapsed length as some fraction of 1 cm, and
then take the height of 4 cm and multiply it by that same fraction to get the proportional
amount of area. This method depended on identifying an extant length first. Wesley’s ability to
appeal to only the height of the rectangle, rather than an increment representing an elapsed
amount of length, suggests that he was able to see the area-to-length ratio as a rate.

It is plausible that Wesley’s reasoning about constant rate was a consequence of a
generalization enabled by his scaling-continuous covariational reasoning. He coordinated
increments of length with corresponding increments of area across smaller and smaller scales

Fig. 4 Dynamically growing figure depicting constant and constantly changing rates of change
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of length. The concept of actual infinity could also assist with the conception of a height as a
rate. If one can imagine smaller and smaller length scales and then characterize that process as
having a resultant state, the resultant state would be not a column with a tiny amount of length,
but a line (i.e., a height) with no associated length. Wesley could then generalize across all
scales the property that the ratio was always constant.

Instantaneous rates of change Wesley began to identify an instantaneous rate as also
determined by a figure’s height at the relevant location. In an initial activity to investigate
the instantaneous rate of change, the teacher-researcher directed the students’ attention to the
trapezoidal middle region in Fig. 4. She asked the students to describe the rate of change of the
area at the halfway mark of this region (where the height was 4.5 cm). Olivia explained that
she saw the rate as “constantly getting larger than the previous increment,” indicating a need to
compare an amount of area for an elapsed increment with that for a previous elapsed
increment. The teacher-researcher pushed Olivia to be more specific by asking, “Could we
come up with a rate?” Olivia struggled to make sense of this question. She asked, “From,
throughout the time?” and the teacher-researcher replied, “No, at that moment.” Olivia
answered, “It’s not increasing, because you’re not really going.”

Wesley disagreed with Olivia’s answer, stating, “I think it might be zero point – or, one-
third plus 3 centimeters. Because the slope of this is one-third, but then you also have to take
into account the rectangle.” His answer reflected the fact that he viewed the trapezoidal region
as a triangle atop a rectangle. The triangle’s slope was 1/3, which means its area grew at a
changing rate, according to 1/3 of its length. Thus, the area’s rate of change halfway through
the region was the rectangle area’s growth rate, 3 cm2 per cm, plus 1/3 of 4.5 (cm2 per cm).

The teacher-researcher then asked for the instantaneous rate of change one-third of the way
through the trapezoidal region. Wesley immediately said 4, which was the height of the
trapezoid at that location: “Because it’d be 3 plus 1, since if it’s a third [the slope] you can
divide it 3 into 3 parts, which is 1.” Likewise he said the area’s instantaneous growth rate two-
thirds of the way through the trapezoidal region the rate was 5 cm2 per cm, again because the
height of the figure was 5 cm there. In each case, Wesley used the slope of the region to
determine the figure’s height for a given swept length, and then said the area’s rate of change
was the region’s height.

Wesley had initially generalized that the area’s rate was the figure’s height for rectangles,
which have constant rates of change. One way to develop the more general understanding for a
non-rectangular region is to consider how much area would be produced if the length were to
begin sweeping out a bit. One could think of a bit as 1 cm, as Olivia did, but it is not necessary
to sweep an entire centimeter in order to calculate the area’s rate of change. Imagining this rate
occurring at any scale, even an infinitesimal one, could allow one to see the rate as a “height,”
not as an extensive quantity, but as a ratio. Once the length sweeps out any amount, it turns the
potential rate into an amount of area depending on how much length has been swept. All that
matters is the region’s height just at the moment when the area begins to grow.

A comparison of the students’ graphs suggests that Wesley’s image was of the area’s
growth rate continuously increasing throughout the sloped region, as evidenced by his attempt
to draw a curved middle portion (Fig. 5a). In contrast, Olivia’s graph represented the area’s
growth rate as constant (Fig. 5b). Olivia’s explanation of the trapezoidal region on her graph
suggests that she relied on chunky-continuous covariation: “In between each very small
increment it’s still growing, but you have to connect the two increments together because
it’s the same shape. It keeps growing at the same rate relatively.” This suggests that Olivia did
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not imagine the nature of change within a given chunk, but she could imagine very tiny chunks
and link them together.

In subsequent tasks, the teacher-researcher continued to probe the students’ ideas about
instantaneous rate. When discussing a growing rectangle the next day, Olivia stated that she
believed the instantaneous rate of change of the area at any given amount of length swept
would be the same, regardless of how much length had been swept. Wesley agreed, but
provided a caveat: “I think so too, but with a triangle, it would be different, because the height
is always increasing.” This again suggests that he saw the triangle’s height at a given length
swept as indicative of the rate at that location.

In order to further support the conception that a height can determine the area’s rate, the
teacher-researcher asked the students to draw a line that was about to sweep out an area at a
rate of 1.5 cm2 per cm swept, but had not yet done so. Olivia drew a rectangle with an
unspecified length x and a height y of 1.5 cm (Fig. 6a). Olivia still required two extant
quantities in order to address the task. She explained, “I did a line with thickness so that we
could write down the height and then the length.”Wesley drew just a vertical line with a height
of 1.5 cm (Fig. 6b). The teacher-researcher asked Wesley, “Does it makes sense to draw just a
line as having a rate of change?” Wesley said yes, and then hesitated, amending his answer:
“Well, I guess maybe for instantaneous, but not for average (rate of change).” He also
indicated that his height line could represent a moment in a sweeping journey for any figure:
“It could really be any (figure) because maybe as you keep sweeping it out it gets bigger and
bigger, or, it just stays the same.”

Scaling-continuous covariation and an associated concept of actual infinity could have
supported Wesley’s identification of a figure’s height as a representation of the area’s rate of

Fig. 5 Wesley (a) and Olivia’s (b) graphs depicting accumulated area versus accumulated length

Fig. 6 Olivia’s (a) and Wesley’s (b) drawings of a line about to sweep out an area at a rate of 1.5 cm2 per cm
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change. Wesley saw the height line as a potential rate that could sweep out any amount. His
comfort with relying on a line, rather than the column that Olivia required, suggests that his
ability to imagine smaller and smaller length increments was a completed infinite process that
had a resultant state, that of a height line.

5 Discussion

We found evidence that scaling-continuous reasoning afforded productive thinking about
constant and instantaneous rates of change. Wesley was able to develop an understanding of
a constant rate of change as a rate that represented an equivalence class of ratios. Further,
Wesley constructed an understanding of the height of a figure as the area’s rate of change.
Chunky-continuous covariation can afford an image of re-chunking to very small increment
sizes, which can in turn support generalizations about equivalent ratios across different
increments. Scaling-continuous covariation, in contrast, enables one to extend such general-
izations to any increment size, even the infinitesimal, which can support one’s ability to
develop and represent rates of change, a foundational idea for algebra and calculus. Thompson
and Carlson (2017) noted that “The idea of a function having a nonconstant rate of change is
actually constituted by thinking of the function having constant rates of change over small
(infinitesimal) intervals of its argument, but different constant rates of change over different
infinitesimal intervals of the argument” (p. 452). Olivia’s reasoning approached this concep-
tion, as she did consider quadratic functions to have constant rates of change over small
intervals, but for her, those intervals were not infinitesimal. Scaling-continuous covariation
could support this understanding for infinitesimal intervals, as we saw with Wesley’s belief
that the constantly changing rate of change for triangles and trapezoids could be represented by
the figure’s height. We also observed in Wesley the less standard belief that a graph of such a
function would have an always-changing rate of change even for an infinitesimal interval. As
evidenced by Wesley’s explanations, his images were a direct outcome of scaling-continuous
covariation, in which he could imagine zooming to an infinitesimal scale at the level of actual
infinity, with the infinitesimal interval being the final resultant state of an infinite zooming
process.

We do not claim that scaling-continuous covariation necessarily preceded and therefore was
the only support for Wesley’s sensemaking about rates of change. Wesley could have been
positioned to develop scaling-continuous covariation because he had already begun to con-
struct equivalence classes of ratios. It could also be the case that Wesley developed a number
of these forms of reasoning in tandem, each mutually supporting the other. In addition, we
cannot ignore the influence of the task sequence and the teacher-researcher’s pedagogical
moves in supporting the students’ development of chunky-continuous and scaling-continuous
covariation. In particular, four salient themes emerged in the role played by the tasks and
teacher questioning: (a) a repeated emphasis on continuous motion; (b) directing students’
attention to what happens within intervals; (c) encouraging attention to increment size,
particularly small and infinitesimal increments, and (d) pushing students to describe and
identify rates.

We relied on tasks that used simulations of growing figures that emphasized continuous
motion and sweeping actions. The teacher-researcher also emphasized such movement and
encouraged the students to first represent rates of change in a non-quantified manner through
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descriptions and graphs before then transitioning to tasks with measurement. She encouraged
the students to imagine change within an increment for a given figure or graph, asking them to
describe what occurred within a given chunk. As part of this, the teacher-researcher used tasks
that required students to consider rates for different increment sizes, including increments less
than 1, and she regularly drew the students’ attention to tiny increments and asked them to
imagine infinitesimal increments. Finally, both the task sequence and the nature of the teacher-
researcher’s questioning required students to describe, identify, and ultimately quantify ratios
and rates. The students experienced many opportunities to attend to changes in area for
corresponding length changes, and the teacher-researcher pushed the students to first describe
and then quantify these rates. By emphasizing constant and changing rates and the ways in
which they remained invariant across increment sizes, even infinitesimal increments, the
nature of instruction in the teaching experiment explicitly supported the development of an
image of multiple increment scales, even (for Wesley) infinitely many small increments.

We do not suggest that smooth-continuous covariational reasoning is unimportant for the
development of key ideas about function and rate. Indeed, smooth-continuous reasoning is a
critical aspect of understanding the mathematics of change, including the ideas of calculus, and
we support instructional efforts at all grade levels to develop conceptions of continuous
covariation. Instead, we suggest that scaling-continuous covariation offers an additional form
of reasoning that may plausibly foster productive understandings to support students’ algebraic
thinking. Given the potential for this form of reasoning to support key constructs in algebra
and calculus, we advocate for additional research to better understand the nature of scaling-
continuous variation and covariation and its affordances for productive mathematical thinking.
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A B S T R A C T

This paper introduces a quadratic growth learning trajectory, a series of transitions in students’
ways of thinking (WoT) and ways of understanding (WoU) quadratic growth in response to in-
structional supports emphasizing change in linked quantities. We studied middle grade (ages
12–13) students’ conceptions during a small-scale teaching experiment aimed at fostering an
understanding of quadratic growth as phenomenon of constantly-changing rate of change. We
elaborate the duality, necessity, repeated reasoning framework, and methods of creating learning
trajectories. We report five WoT: Variation, Early Coordinated Change, Explicitly Quantified
Coordinated Change, Dependency Relations of Change, and Correspondence. We also articulate in-
structional supports that engendered transitions across these WoT: teacher moves, norms, and
task design features. Our integration of instructional supports and transitions in students’ WoT
extend current research on quadratic function. A visual metaphor is leveraged to discuss the role
of learning trajectories research in unifying research on teaching and learning.

1. Introduction and literature review

1.1. Students’ learning of quadratic function

Characterizing and supporting students’ meaningful learning of function remains an important and challenging goal of algebra
and algebraic thinking across school mathematics (e.g., Ayalon & Wilkie, 2019; Ellis, 2011b; National Governors Association &
Council of Chief State School Officers, 2010; Stephens, Ellis, Blanton, & Brizuela, 2017). Non-linear functions in particular can be
difficult for students to understand (Ellis & Grinstead, 2008; Lobato, Hohensee, Rhodehamel, & Diamond, 2012; Wilkie, 2019;
Zaslavsky, 1997). This study addresses student learning of quadratic functions, an important topic in secondary school, in particular,
when students begin to formally develop the algebraic tools to express and represent different functional relationships (Blanton et al.,
2018; Stephens, Ellis et al., 2017). There are a host of studies that point to areas of difficulty students experience with understanding
quadratic function (e.g., see Wilkie, 2019). In brief, students may struggle to interpret the coefficient of a quadratic and the role of
parameters (Dreyfus & Halevi, 1991; Ellis & Grinstead, 2008; Zaslavsky, 1997), have difficulty moving among representations of
quadratic functions (Kotsopoulos, 2007; Metcalf, 2007; Moschkovich, Schoenfeld, & Arcavi, 1993), may possess a compartmenta-
lized, procedural view of quadratic functions (Parent, 2015), and often inappropriately generalize from linearity (Ellis & Grinstead,
2008; Schwarz & Hershkowitz, 1999; Zaslavsky, 1997). Despite these well documented difficulties, there are few studies that
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intentionally design instruction to address these challenges to students’ learning of quadratic function.
One step toward addressing more robust supports for students’ understanding of quadratic functions is to articulate instructional

goals and design principles. Ellis’ (2011a) study on students’ generalization of quadratic growth, for instance, articulated the need to
situate students’ exploration within visualizable, manipulable contexts in order to identify constantly-changing rates of change of two
co-varying quantities. Relatedly, Lobato et al.’s (2012) study elaborated five conceptual learning goals for quadratic function, as well
as a set of instructional tasks that could elicit such student understandings. These learning goals included: (a) conceptualize change in
dependent quantities, (b) conceive of changes in independent quantities and corresponding sets of changes in dependent quantities,
(c) construct a sequence of ratios of change in dependent quantities to change in independent quantities, (d) construct rates of change
as a new quantity, and (e) conceive the rate of rate of change of the dependent variable with respect to the independent variable as
constant. Both of these studies stressed the importance of supporting students’ understanding of quadratic growth within a quan-
titatively rich situation with a constantly-changing rate of change.

Lobato et al.’S (2012) study provided a viable framework for what students should learn with respect to quadratic function and
recommended designing tasks that involve situations with linked quantities such as length-area and time-distance. Related studies
have investigated instructional supports for quadratic functions, including principles for task design and the role of multiple re-
presentations. For example, in a study of students’ intuitions of quadratic growth patterns, Wilkie (2019) explored secondary stu-
dents’ approaches to generalizing quadratic functions from figural growth patterns, and found that “[d]rawing on a visual context
such as figural growing patterns might support students in learning conceptually about what actually makes a function quadratic in
nature” (p. 16). Wilkie further suggested task design features such as sequencing tasks of the same type, asking students to generalize
from visual patterns, and creating quadratic growth patterns by attending to bi-directional links across figures, equations, tables and
graphs. In a related study, Selling (2016) argued that communicating with and reasoning about multiple representations supported
students’ learning of specific aspects of quadratic function such as first and second differences, and explicit and recursive rules.
Finally, Rivera and Becker (2016) found that students were able to generalize quadratic growth patterns from a series of figural
growth patterns with instructional support. Despite these advances, however, the nature of instructional supports remains under-
specified, a gap this study aims to address.

1.2. Research aims

We build on the body of work that advances our understanding of both what students are to learn about quadratic functions, and
how instructional supports may engender that learning. Our aim is to not only expand characterizations of students’ learning of
quadratic function (what students learn), but also to link these characterizations together with mechanisms of learning and in-
structional supports (how students learn). Our design and development inquiries were guided by the following research questions: (a)
How can middle-school students’ learning of quadratic growth be characterized and supported? (b) How do goal-directed instructional
supports engender that learning?

To address these questions, we developed a quadratic growth learning trajectory as a representation of transitions in the
mathematics of students and the instructional supports that engendered those transitions. We report five Ways of Thinking (WoT)
students demonstrated about quadratic growth: Variation, Early Coordinated Change, Explicitly Quantified Coordinated Change,
Dependency Relations of Change, and Correspondence. We also introduce three types of instructional supports that engendered tran-
sitions across these ways of thinking: teacher moves, norms, and task design features.

2. Theoretical framework

2.1. Defining a learning trajectory

The construct of a learning trajectory has been discussed in a variety of ways in the literature (Clements & Sarama, 2004; Ellis,
Weber, & Lockwood, 2014; Fonger, Stephens et al., 2018; Lobato & Walters, 2017; Simon et al., 2010). Simon’s (1995) original
construct was for a hypothetical learning trajectory, which consisted of “the learning goal, the learning activities, and the thinking
and learning in which students might engage” (p. 133). Some researchers emphasize the evolution of mental concepts as the key
aspect of a learning trajectory. For instance, Wilson, Sztajn, and Edgington (2013) defined a learning trajectory as a research-based
description of how students’ thinking evolves over time from informal to more formal and complex mathematical ideas, Battista
(2004) described increased levels of cognitive sophistication through which students progress until they reach formal concepts, and
Hackenberg (2013) described a learning trajectory as a model of students’ internal conceptions and an account of changes in their
schemes and operations. Similarly, Confrey, Maloney, Nguyen, Mojica, and Myers (2009), Panorkou, Maloney, and Confrey (2013)
depicted learning trajectories as emphasizing students’ refinement of their own conceptual understanding.

Other researchers have emphasized the coordination of learning goals with instructional tasks and activities. Clements and
Sarama (2004) described a learning trajectory as consisting of three parts: a mathematical goal, a model of cognition which they
called developmental progressions, and instructional tasks providing experiences to support students’ movement through the levels.
This inclusion of tasks separates their definition from other progressions that document only sequences of students’ thinking (e.g.,
Daro, Mosher, & Corcoran, 2011; National Assessment Governing Board [NAGB], 2008). Sarama (2018) has continued to emphasize
the role of curricular tasks, describing a learning trajectory as a “device whose purpose is to support the research-grounded devel-
opment of a curriculum or other unit of instruction” (p. 72).

Research on learning has largely developed separately from research on teaching (Myers, Sztajn, Wilson, & Edgington, 2015), but
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Sarama (2018) cautioned that one cannot discount the role of instruction. Similarly, Confrey et al. (2009) have explicitly ac-
knowledged that conceptual growth, as depicted in a learning trajectory, is influenced by instruction. Simon et al. (2010) have called
attention to a paradox in studying learning—that to study learning, instruction must promote the learning one intends to study. Steffe
(2004) also directly addressed the role of instruction by acknowledging the importance of accounting for changes in students’
concepts and operations “as a result of children’s interactive mathematical activity in the situations of learning, and an account of the
mathematical interactions that were involved in the changes” (p. 131). The few studies of learning trajectories that directly address
instructional actions typically attend to a sequence of learning goals and instructional activities (Fonger, Davis, & Rohwer, 2018,
2018b), instructional practices and activity structures (Fonger, 2018; Stephens, Fonger et al., 2017), the nature of shifts in student
conceptions during instructional interventions (Ellis, Ozgur, Kulow, Dogan, & Amidon, 2016), and students’ activity and engagement
with mathematical tasks (e.g., Simon et al., 2010). Following these approaches, we define a learning trajectory to be an empirically-
based model of students’ understandings, along with an account of changes in understanding in relation to students’ interaction with
instructional supports including mathematical tasks, tools and representations, and teacher moves (Ellis et al., 2016).

2.2. DNR-based instruction

We draw on DNR-based instruction (Harel, 2008a, 2008b) in order to inform our instructional design principles for the devel-
opment, enactment, and analysis of our learning trajectory. DNR stands for the three instructional principles duality, necessity, and
repeated reasoning. The duality principle addresses two forms of knowledge, Ways of Understanding (WoU) and Ways of Thinking
(WoT). WoU are students’ concepts of specific subject matter, including particular definitions, theorems, proofs, problems, and their
solutions (Harel, 2008a). For instance, one WoU about quadratic functions is that quadratic growth is a representation of a re-
lationship between two co-varying quantities in which one quantity varies at a constantly-changing rate of change relative to the
other. WoT are broader conceptual tools, such as empirical reasoning, deductive reasoning, heuristics, and beliefs about mathematics
(Harel, 2013). For instance, one WoT relevant to students’ learning of quadratic functions is a treatment of functional relationships as
number patterns, devoid of quantitative referents. Alternatively, one could have a WoT that functions can be investigated as a
phenomenon of co-varying quantities. The duality principle states that students develop WoT through the production of WoU, and,
conversely, the WoU they produce are afforded and constrained by the WoT they possess (Harel, 2008a). The central objective of the
initial content of a learning trajectory, then, must be formulated in terms of both WoU and WoT.

The necessity principle addresses the notion of intellectual need, stating that in order for students to learn the mathematics we
intend to teach them, they must experience a need for it (Harel, 2008b). Intellectual need can be engendered through situations that
students experience as problematic and that necessitate the creation of new knowledge in order to be resolved. This requires de-
veloping problem tasks that students can relate to and become invested in and that necessitate the development of new WoU as a
consequence of intellectual engagement with the task, rather than through students’ social needs, such as the need to please their
teacher, or to achieve a high grade.

Finally, the repeated reasoning principle addresses the importance of ensuring that students internalize, retain, and organize their
knowledge (Harel, 2008a). Repeated reasoning is a mechanism for reinforcing desirable WoU and WoT. Repeated reasoning should
not, however, be confused with the drill and practice of routine problems. Rather, it is an instructional principle that relies on
providing students with sequences of problems that continually call for thinking through puzzling situations and solutions; the
problems respond to students’ intellectual needs.

2.3. Quantitative reasoning and rates of change

Two common approaches that typically undergird function instruction are the correspondence approach and the coordination or
covariation approach. The correspondence approach, which is overwhelmingly prevalent in secondary mathematics curricula and
standards in the United States (National Governors Association & Council of Chief State School Officers, 2010; Thompson & Carlson,
2017), emphasizes functional relationships as mappings. A function y = f(x) is defined as a relation between members of two sets,
with each value of x mapped to a unique value of y (Smith, 2003). This approach emphasizes the development of closed-form, explicit
rules that can be used to analyze and predict function behaviors.

In contrast, Confrey and Smith (1994), Saldanha and Thompson (1998), Smith (2003), Smith and Confrey (1994) and Thompson
and Thompson (1992), Thompson (1994), Thompson and Carlson (2017) introduced what they called covariation approaches, al-
though these approaches differ somewhat from one another. Confrey and Smith’s (1994) covariation approach emphasizes attention
coordinated changes in x- and y-values, in which one can move operationally from ym to ym+1 coordinated with movement from xm
to xm+1. This approach supports engagement with tables and graphs that can be interpreted by students as presenting successive
states of variation, supporting the development of an understanding that quantities have sequences of values. We call this way of
thinking the coordination approach, and note that students can attend to coordinated changes in co-varying quantities even if their
images of quantitative situations are static, rather than dynamic.

In a different approach, Saldanha and Thompson (1998) addressed the imagistic foundations that support students’ abilities to
reason about quantities that vary, either independently or simultaneously. This form of reasoning involves mentally holding a sus-
tained image of two quantities’ values simultaneously while attending to how they change in relation to one another (Castillo-
Garsow, 2013). From this perspective, covariational thinking entails the coupling of two quantities in order to form a multiplicative
object; once this object is formed, a student can attend to either quantity’s value with the explicit understanding that at every
instance, the other quantity also has a coordinated value. This approach addresses the importance of developing dynamic, rather than
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static images of quantitative situations, and we call it the covariation approach to distinguish it from the coordination approach
described above.

The covariation and coordinated change approaches leverage the notion of a quantity, which Thompson (1994) defined as a
person’s scheme composed of an object, a quality of the object, an appropriate unit or dimension, and a process for assigning a
numerical value to the quality. Thus, a quantity is a conceptual entity, rather than a characteristic that exists in the object itself.
Attributes such as length, area, distance, and speed can be conceived as quantities. Quantitative reasoning is the process of reasoning
with quantities, their relationships, and associated mathematical operations.

3. Methods

This study is situated in the paradigm of design-based research, in which our goal is to simultaneously engender innovative forms
of learning and to study the resulting learning in the context in which it was supported (Cobb & Gravemeijer, 2008; Cobb, diSessa,
Lehrer, & Schauble, 2003; Gravemeijer & Cobb, 2006). A design experiment has three phases: design, experiment, and analyze.

3.1. Design

In the design phase we created a hypothetical learning trajectory (Simon, 1995) of goals, potential instructional supports, and
hypotheses of students’ learning processes informed by the literature on students’ learning of quadratic function, DNR-based in-
struction design principles, and information learned from pre-interviews with each student. Prior research has documented the
difficulties in supporting students’ meaningful understandings of quadratic function from approaches that emphasize patterning, and
representational forms of quadratic functions (see Section 1.1). In contrast, we chose to leverage research and theory on quantitative
reasoning and rates of change (see Section 2.3) to ground the design of a hypothetical learning trajectory.

Our goal was to engender students’ understanding of quadratic growth as a phenomenon of constantly-changing rate of change
among linked quantities (Ellis, 2011a; Saldanha & Thompson, 1998). In order to support this goal, we designed a context with
quantities that students could visualize, manipulate, and explore by comparing the lengths, heights, and areas of proportionally-
growing rectangles (Ellis, 2011a). These rectangles grew in both length and height but maintained the ratio of length to height (a);
thus, the relationship between the height, h, and the area, A, can be expressed as A = ah2 (Fig. 1). Using dynamic geometry software,
students could manipulate and measure a rectangle’s length, height and area to discern the relationship between these changing
quantities.

Within this instructional context, we sought to engender three WoU: (a) the rate of change of a rectangle’s area grows at a
constantly-changing rate compared to changes in height; (b) given a height, h, the rectangle’s area can be determined by A = ah2

where a is the ratio of length to height; and (c) the constantly-changing rate of change of the area, A, is dependent on the change in
height (Δh) such that for the ratio of length to height (a), the constantly-changing rate of change is 2a(Δh)2.1 We designed a series of
tasks that we conjectured would engage students in quantitative reasoning. For example, we asked students to draw several iterations
of the proportionally growing rectangle and to create tables relating changes in height and area. Other tasks prompted for gen-
eralization of relationships (see Fig. 2).

3.2. Experiment

3.2.1. Setting and participants
The study was situated at a public middle school located in a midsized city in the United States. The participants were 6 eighth-

grade students (3 girls and 3 boys) who were enrolled in pre-algebra (3 students), algebra (2 students), and geometry (1 student). The
students’ teachers identified them as either high, medium, or low based on their assigned mathematics class, as well as on their
mathematics grades, attendance, and participation in class. Two students were identified as high, 2 students were identified as
medium, and 2 students were identified as low. One student was Indian American, 2 students were Asian American (one of them was
an English language learner), and 3 students were Caucasian. Gender-preserving pseudonyms were used for all participants. None of
those students had experience with quadratic functions, but all had studied linear functions in their courses.

Fig. 1. A diagram of the proportionally growing rectangle context.

1 For an elaboration of the mathematics of this generalized case, see Ellis (2011a).
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3.2.2. Teaching experiment
We conducted a 15-session videoed teaching experiment [TE] (Cobb & Steffe, 1983), with each session lasting 1 h. The TE setting

allowed for the creation and testing of hypotheses in real time while engaging in teaching actions. This meant that the mathematical
topics for the entire set of sessions were not predetermined but instead were created and revised on a daily basis in response to
hypothesized models about the students’ mathematics. Fig. 3 provides a brief overview of the topics addressed in the TE. Task design
was also an ongoing part of the experiment. For example, as we learned new information about student learning processes, we
designed new tasks to support the students’ intellectual need to elaborate and justify relationships that held for all proportionally
growing rectangles.

The second author was the teacher-researcher (TR), and two project members observed each teaching session. The TR fostered a
learning environment that encouraged students to make and test conjectures, to make predictions and generalizations, and to ex-
plicitly attend to quantities and their relationships. During TE activities, the students worked individually, in pairs, and in small
groups, before then discussing their ideas with the entire group. The project members operated two video cameras during the
teaching sessions to capture both the whole-group discussions and the small group interactions. The project team met after each
session to debrief, discuss what had occurred during the session, and design new tasks or revisions to planned tasks.

3.3. Analyze

Our goal in creating a learning trajectory was to establish rich descriptions of the nature of learning in the context of instructional
supports (cf. Cobb & Gravemeijer, 2008). To attain this goal, we conducted several rounds of data analysis with differing foci. Our
primary focus was to articulate change in the mathematics of students2 ; our secondary focus was to contextualize and explain these
changes with respect to instructional supports. All sessions of the TE were transcribed; then, all transcripts were enhanced to include
verbal utterances, images of the drawings on the board, student’s written predictions prior to discussion, and descriptions of the
students’ gestures. To analyze the data, we applied the constant comparative method (Strauss & Corbin, 1990) and axial coding
(Strauss, 1987) to develop and discern relationships among codes.

In the first round of coding, all three authors independently coded the first eight sessions and then met to discuss and reconcile

Fig. 2. Two sample tasks.

Fig. 3. Overview of the TE sessions (reproduced from Ellis, 2011a, p. 313).

2 We distinguish between first-order knowledge (one’s own knowledge) and second-order knowledge (a model of another’s knowledge) (cf. Steffe,
von Glasersfeld, Richards, & Cobb, 1983). In this paper we aim to build second-order models of students’ first order knowledge. Said otherwise,
students’ mathematics entails “a students’ first-order mathematical knowledge” while the mathematics of students entails “explanatory models of
students’ mathematics” (Steffe, n.d., p. 7). Thus, in our focus on building models of students’ mathematics, we are characterizing the mathematics of
students.
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their coding decisions. During this phase, we established an initial framework of emergent categories and subcategories of relevant
student concepts. In the second phase, we applied our coding framework to sessions 9–15, again meeting to reconcile our coding after
each session. These reconciliations resulted in modifying code descriptions, adding new codes, and collapsing existing codes. After
these two rounds, we reached a stable coding scheme and then re-coded all sessions with the final scheme, which included specific
WoU and broader WoT. As a note, Harel used the terms WoU and WoT to distinguish specific mathematical ideas from broader
heuristics and beliefs. In contrast, we have adapted these terms to distinguish clusters of concepts as WoT, and then the specific
concepts within each cluster as WoU. In order to distinguish how we have adapted Harel’s term “WoT” to identify these clusters, we
will hereafter refer to them by number: WoT1, WoT2, etc. These numbered WoT are distinguished from the more general WoT that
are not part of the learning trajectory, but are instead heuristics and beliefs, such as attending to patterns.

In the final phase of coding, we identified transitions in students’ WoT and how those shifts occurred in response to instructional
supports. We identified an instructional support by analyzing the data corpus for evidence of task features, teacher moves, and other
features that appeared to engender students’ WoT and WoU. While the instructional supports were emergent, they were also informed
by our knowledge of the existing literature on teacher moves (e.g., Bishop, Hardison, & Przybyla-Kuchek, 2016; Franke et al., 2009;
Peterson et al., 2017), norms (Cobb & Yackel, 1996; Stephan, 2014), and tasks (Bieda & Nathan, 2009; McCallum, 2019; Stein &
Smith, 1998).

4. Results: the quadratic growth learning trajectory

In this section we introduce models of students’ WoT and WoU about quadratic growth, the transitions that occurred from one
WoT to the next, and the instructional supports that engendered those transitions. We identified five WoT: WoT1 Variation, WoT2
Early Coordinated Change, WoT3 Explicitly Quantified Coordinated Change, WoT4 Dependency Relations of Change, and WoT5
Correspondence. Each of these five WoT includes a number of specific WoU. We also found three types of instructional supports, which
we categorize into (a) teacher moves, (b) norms, and (c) task design features.

A teacher move is what the TR does in response to students’ mathematical thinking, or to elicit new instances of mathematical
thinking when engaging an individual student, a small group, or the whole class (cf. Peterson et al., 2017). We found these teacher
moves to fall under three broad design heuristics: quantitative reasoning, representational fluency, and generalization. Norms are the
expectations that the teacher and students have for each other that are present during mathematical discussion or student engage-
ment with mathematical tasks (cf. Cobb & Yackel, 1996). We found the norms to cluster around two design heuristics—quantitative
reasoning and representational fluency—as well as social norms for mathematical discourse in classroom interaction. A task is
statement of a mathematical problem or set of problems that focuses students’ attention on a particular mathematical idea or provides
an opportunity for students to engage in a particular way of thinking (cf. Stein & Smith, 1998). We found several task design features
and characterized these as falling into three types: doing mathematics, far prediction and generalization, and repeated reasoning.
Sample tasks are given in the methods section and the forthcoming results subsections.

The learning trajectory for quadratic growth is introduced in Table 1. The learning trajectory includes the mathematics learning
goal, the mathematics of students—both WoT1 through WoT5 and their subsequent WoU—and the instructional supports that en-
gendered transitions in the mathematics of students. We caution the reader not to interpret the learning trajectory as a set of
understandings that were predetermined, nor as a list of understandings and instructional supports that occurred in a linear order.
Instead, this learning trajectory constitutes a model characterizing how the students learned to organize their WoT and related WoU
in an intentionally designed, supportive instructional context guided by a conceptual learning goal. Fig. 4 introduces a visualization
of the set of instructional supports unified with the WoT and WoU. This depicts the quadratic growth learning trajectory as a dynamic
model of transitions.

In the following sections we elaborate the four major transitions the students experienced from one WoT to the next. Each section
addresses the relevant WoT with select examples of WoU and the instructional supports that engendered the students’ transitions.

4.1. Transition I: from variation to early coordinated change

The first transition in the learning trajectory is from WoT1 Variation, to WoT2 Early Coordinated Change. The students’ initial
attention to variation was such that they did not coordinate change across quantities. Instead, they only attended to variation in one
quantity at a time, or, they attended to two types of variation but only as a sequence of disconnected changes.

4.1.1. WoT1 variation
Initial tasks for the quadratic growth situation incremented a proportionally growing rectangle by 1 cm in height, and we then

began to introduce tasks in which the rectangles’ height or length values grew by greater than 1 cm. The students created their own
data tables to keep track of the growth in height, length, and area. For example, given a growing square, Jim created a table relating
the square’s length and width to its area (Fig. 5). When the TR asked Jim to discuss his table, Jim focused solely on describing the
area’s second differences of 18 cm2 as “going up by 18 s” without attending to how the square’s height (or length) grew. We call this
WoU1.1 Single-Quantity Variation because the students noticed and described changes in one quantity’s magnitude without attending
to the other quantity or changes in its magnitude. We note that it is likely that the students did not even implicitly attend to changes
in the other quantity’s magnitude because they did not experience an intellectual need to do so, given that their tables were well-
ordered.

Another observed WoU within WoT1 is WoU1.2 Uncoordinated Variation, in which students began attending to variation across
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multiple quantities as isolated patterns. This was particularly prominent in far prediction tasks for tables in which the height was
incremented by more than 1 cm. For example, given the table in Fig. 6, Ally conceived of the difference in length as “going up by
eight” and also noted that “It’s going up by 2 s (in height),” yet did not attend to how the two quantities changed together.

In Table 2 we summarize the two component WoU for WoT1 Variation. Notice in this table that each instructional support is
identified for each WoU, one by one. All of the students entered the TE attending to changes in the values of one or more quantities;
we saw this as evidence of a general WoT that valued pattern-seeking. The students were adept at finding and identifying many
different patterns, particularly patterns within one quantity. This WoT supported the development of the students’ initial WoT1 of
attending to single-quantity or disconnected variation. Thus, in task situations such as that given in Fig. 6, coordinated variation did

Table 1
A Quadratic Growth Learning Trajectory.

Conceptual Learning Goal

Support students’ understanding of quadratic growth as a relationship between quantities such that the dependent quantity y has a constantly-changing rate of
change with respect to the independent quantity x. In symbols, for a quadratic function f : x→y, if ΔΔy = d, then y = d/(2(Δx)2)•x2

Students’ Ways of Thinking (WoT),
Ways of Understanding (WoU)

Instructional Supports

Initial
WoT1 Variation• WoU1.1 Single-Quantity
Variation• WoU1.2 Uncoordinated
Variation

Teacher Moves Norms Task Design Features

Transition I
WoT2 Early Coordinated Change• WoU2.1a,b Implicit
Coordinated Change• WoU2.2 Qualitative
Coordinated Change

Quantitative Reasoning:• Ask students to explicitly attend to
how quantities change together as
expressed in diagrams, words, and
tables;• Explicitly draw attention to and
identify quantities; and• Press for quantitatively-based
justifications.

Quantitative Reasoning:• Be explicit about the
amount of change for each
of the relevant quantities;• Attend to linked quantities
as relationships of explicit
coordinated change; and• Make and test predictions
about generalized
relationships among linked
quantities.

Repeated Reasoning:• Investigate a quadratic growth situation
where change in independent quantity
(Δx) is greater than 1;• Investigate a quadratic growth situation
where change in independent quantity
(Δx) is less than 1;• Investigate a collection of tables for
quadratic growth where the change in the
independent quantity (Δx) is greater than
1 and varied across the set; and• Sequence tasks of the same type to allow
students to test conjectures about
generalized relationships.

Transition II
WoT3 Explicitly Quantified
Coordinated Change• WoU3.1a,b Single-Unit Explicit
Coordination• WoU3.2a,b Multiple-Unit
Explicit Coordination• WoU3.3a,b Partial-Unit Explicit
Coordination

Representational Fluency:• Ask students to create their own
tables of two or more quantities
changing together;• Prompt students to connect
different representations;• Encourage students to create
drawings or diagrams and to name
quantities; and• Encourage students to create
graphs.

Representational Fluency:• Create tables and drawings
to express relationships in
quadratic growth contexts.

Far Prediction and Generalization:• Predict the changing rate of change in a
quadratic growth situation from a table of
quantities;• Elicit conjectures about generalized
relationships among linked quantities for
a quadratic growth context;• Make far predictions of independent and
dependent quantities for a given
quadratic growth pattern; and• Elicit generalizations of relationships
between independent and dependent
quantities using variables.

Transition III
WoT4 Dependency Relations of
Change• WoU4.1 Recognition that
Change in One Quantity
Determines Change in the Other• WoU4.2 Identification of How
Change in One Quantity
Determines Change in the Other• WoU4.3 Translations of
Dependency Relations of
Change to Correspondence
Rules

Generalization:• Prompt students to make
conjectures and test their
conjectures in a new task context;
and• Ask students to generalize a
mathematical relationship they
identified.

Mathematical Discourse:• Multiple student responses
are shared for a single
question or task; and• Students respond to and
build on each other’s ideas.

Doing Mathematics:• Encourage thinking through puzzling
situations and solutions (e.g., given an
un-specified quadratic growth pattern);
and• Quadratic growth task allows for multiple
different ways of interpreting and
explaining one’s reasoning.

Transition IV
WoT5 Correspondence• WoU5.1a,b Correspondence
Relations Between Independent
and Dependent Quantities
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Fig. 4. A visualization of the quadratic growth learning trajectory as a dynamic model of transitions in students’ WoT and WoU together with an
integrated set of instructional supports.

Fig. 5. Jim attended to single-quantity variation.

Fig. 6. Ally’s uncoordinated variation of quantities.

Table 2
WoT1 Variation, Related WoU, and Instructional Supports.

WoT1 Variation (Conceiving of single or multi-quantity variation without coordination)

WoU Definition Data Example Instructional Support

WoU1.1 Single-Quantity
Variation

Student attends to a change in one quantity
without coordinating this change with any other
quantity change.

Jim: “This one is going up by
18 s.”

Task Design Feature: Ask students to
investigate a quadratic growth situation
given an initial independent quantity (x)
greater than 1.

WoU1.2 Uncoordinated
Variation

Student attends to a change in more than one
quantity without coordinating simultaneous
change; variation is treated as isolated patterns
or sequences.

Ally: “I figured out it was
going up by eight (in length)”
and “It’s going up by 2 s (in
height).”

Teacher Move: Ask students to explicitly
attend to how quantities change together as
expressed in diagrams, words, and tables.
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not occur spontaneously for students. We found that several instructional supports were necessary for students to develop attention to
coordinating changes in the values of two or more quantities, as we describe in the next section.

4.1.2. WoT2 early coordinated change
When students began to attend to coordinated change in the values of two or more co-varying quantities, we found that their

initial conceptions of these changes were either qualitative (unquantified) or implicit for at least one of the quantities. We call this
WoT2 Early Coordinated Change. We identified two main WoU for WoT2: Implicit Coordinated Change (WoU2.1a, and WoU2.1b) and
Qualitative Coordinated Change (WoU2.2). Additionally, we found five instructional supports for developing WoT2: teacher moves of (1)
asking students to explicitly attend to how quantities change together as expressed in diagrams, words, and tables, (2) press for
quantitatively-based justifications, (3) prompts to connect different representations; a series of tasks with task design feature that
afforded (4) investigation of a quadratic growth situation where change in independent quantity (Δx) is greater than 1, and (5) tasks
that encouraged thinking through puzzling situations and solutions (e.g., with an un-specified growth pattern). As we exemplify
below, we found certain instructional supports to engender particular WoU. Moreover, some instructional supports engendered more
than one WoU within WoT2.

4.1.2.1. WoU2.1 implicit coordinated change. During the TE, the TR encouraged the students to describe how the values of the
growing rectangle’s quantities height, length, and area changed, as well as to explicitly connect how these quantities were interpreted
in tables, figures, and words. For example, students investigated a proportionally growing rectangle that maintained a 2:3 ratio of
height to length on a Geometer’s Sketchpad © file that could be dragged to show dynamic growth. Daeshim’s drawing and table are
given in Fig. 7. Prompted to explain the table, Jim described “then [the] branch off of those is that they all go up by 3” (see the +3 on
the right side of the table in Fig. 7). The TR pressed students to explain this finding:

TR: Can you anticipate what I'm going to ask you now?
Jim: Where does the 3 come from?
TR: Where does the 3 come from? What does the 3 have to do with the picture?
Anna: Uh, this is just a guess, but uh, when it goes up by 3 s, like it did with the 2 s, like every time it grows it adds 3.
In this excerpt, the TR pressed the students to give a quantitatively based explanation for their finding, and Anna coordinated the

constantly-changing difference in change in area (3 more squares) implicitly with a change in height, stating, “every time it grows, it
adds 3.” We take this as evidence of WoU2.1b Implicit Coordination of Second Differences with Change in Another Quantity. Note that
WoU2.1 Implicit Coordinated Change includes two sub-levels; WoU2.1a focuses on implicit coordinated change in two quantities, while
WoU2.1b focuses on coordinated change of second differences with change in another quantity (see Table 3).

4.1.2.2. WoU2.2 qualitative coordinated change. The second WoU for WoT2 is WoU2.2 Qualitative Coordinated Change. An example of
this WoU occurred when the students examined a “Mystery Table” (see Fig. 8), in which the area function was unknown. After the
students worked on the task, the TR invited students to imagine how the height and length of the rectangle was growing based on
their reading of the table.

TR: Is the rectangle growing in one direction only or do you think it's growing in both directions?

Fig. 7. Daeshim’s drawing and table of the proportionally growing 2 cm by 3 cm rectangle.
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Bianca: Both.
TR: Both? How come?
Jim: Because the height and length are changing in numbers.
Jim said that both the height and length were changing, but he did not quantify the change. This example illustrates that as the

students began to attend to changes in two or more quantities simultaneously, they would often describe these changes without
quantifying the nature of the change. In another example, Daeshim said, “Well, it's the length times height. If length were growing,
area will be bigger.” The instructional supports that encouraged attention to simultaneous (albeit qualitative) change included a
teacher move of eliciting students’ descriptions for how the rectangle grew, as well as the use of tasks that relied on “Mystery Tables”.
These tables provided students with height and area values and challenged them to determine the nature of the rectangle’s growth,
necessitating attention to how both quantities grew together. Another teacher move that encouraged the development of WoT2 was a
prompt to connect different representations. For instance, the TR encouraged the students to use the data provided in tables to draw
rectangles with labelled quantities of height and length.

As summarized in Table 3, students’ transition to WoT2 Early Coordinated Change was characterized by either Implicit Coordinated
Change (WoU2.1a or WoU2.1b) or a Qualitative Coordinated Change (WoU2.2). We found the same collection of instructional supports
to engender both WoU2.1a and WoU2.1b, hence the grouping across these rows in Table 3. Instructional supports included teacher

Table 3
WoT2 Early Coordinated Change, Related WoU, and Instructional Supports.

WoT2 Early Coordinated Change (Conceiving of multi-quantity variation without explicit quantification of both quantities)

WoU Definition Data Example Instructional Support

WoU2.1a Implicit Coordinated
Change in Two or More
Quantities.

Students attend to growth in both quantities
together, but the magnitude of change
remains implicit for one or both quantities.

Jim: “How many new
squares it’s gaining every
time it grows.”

Teacher Moves:• Ask students to explicitly attend to how
quantities change together as expressed
in diagrams, words, and tables; and• Press for quantitatively-based
justifications.

Task Design Feature:• Investigate a quadratic growth situation
where change in independent quantity
(Δx) is greater than 1.

WoU2.1b Implicit Coordination of
Second Differences with Change
in Another Quantity.

Students coordinate the difference in the rate
of growth of the area, but the magnitude of
the change remains implicit for one or both
quantities.

Anna: “like every time it
grows it adds 3 [more
squares]”

WoU2.2 Qualitative Coordinated
Change

Student links the change in two or more
quantities, understanding that they change
together, without quantifying the change.

Daeshim: “Well, it's the
length times height. If
length were growing, area
will be bigger”.

Teacher Moves:• Ask students to explicitly attend to how
quantities change together as expressed
in diagrams, words, and tables; and• Prompt students to connect different
representations.

Task Design Feature:• Encourage thinking through puzzling
situations and solutions (e.g., given an
un-specified growth pattern).

Fig. 8. A Mystery Table Task.
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moves such as prompting students to identify and articulate changes in quantities across figures, tables, graphs, as well as tasks that:
(a) varied the initial value of the height, and (b) encouraged attention to two quantities changing together (e.g., the Mystery Table).

4.2. Transition II: establishing explicitly quantified coordinated change

The second major transition in the learning trajectory occurred when the students developed the WoT3 Explicitly Quantified
Coordinated Change. By explicit quantified coordination, we mean that the students identified the amounts of change in each of the
quantities as they coordinated changes in both quantities together. This WoT includes three main WoU: (a) Single-Unit Explicit
Coordination (WoU3.1a and WoU3.1b), (b) Multiple-Unit Explicit Coordination (WoU3.2a and WoU3.2b), and (c) Partial-Unit Explicit
Coordination (WoU3.3a and WoU3.3b). We found seven instructional supports that fostered these WoU. They included the teacher
moves of: (1) explicitly drawing attention to and identifying quantities, (2) prompting students to create their own tables of two or
more quantities that changed together, (3) pressing for quantitatively-based justifications, and (4) encouraging students to create
drawings, diagrams, or graphs and name quantities. The instructional supports also included tasks requiring students to: (5) predict
the constantly-changing rate of change, and (6) investigate tables of linked quantities with increments less than 1 for the independent
variable. A norm was also established: (7) be explicit about the magnitude of change for each of the relevant quantities. We elaborate
the specific links between this set of instructional supports and the particular WoU these instructional supports engendered in the
following subsections.

4.2.1. WoU3.1 single-unit explicit coordination
As discussed above, when the students initially began to coordinate changes in co-varying quantities, they did so without ex-

plicitly attending to the amount of change. In an attempt to encourage the students to explicitly attend to both the relevant quantities
and the nature of their coordinated changes, the TR began to model this type of attention focusing through the teacher moves of
drawing figures and naming quantities. She also asked the students to create their own tables to compare the rectangle’s length to its
area. The manner in which the table was organized (what values to begin with and what the amount of increase should be from one
entry to the next) was left open to the students. In creating their own tables and making decisions about both initial values and
amounts of increase, the students gained facility with explicitly attending to coordinated changes.

Recall Daeshim’s table and figure for a proportionally growing 2 cm by 3 cm rectangle (Fig. 7). As the students created drawings
and tables, Bianca said, “I found that the length is 1.5 times the height.” The TR asked her to explain on the board with a picture.
Bianca drew a growing rectangle similar to that shown in Daeshim’s drawing on the left hand side of Fig. 7. She then explained, “If
you increase it by 1 (adds on to her rectangle), then you’ve got, now it’s 3 by one point, er, 4.5. So 3 times 1.5 equals 4.5. It just keeps
going like that.” As Bianca grew the rectangle in her drawing, she was forced to coordinate growth in height with growth in length,
realizing that for every 1-cm growth in height, there was a corresponding 1.5-cm growth in length: “For every 1 you add it up, then
you add 1.5 across.” This is evidence of WoU3.1a Single-Unit Explicit Coordinated Change in Two Quantities.

Once the students noticed this pattern, the TR asked them to explain why the area grew by a constantly-changing rate of change
that increased by 3 cm2 per each 1-cm increase in height: “Where does the 3 come from? What does the 3 have to do with the
picture?” This press for a quantitatively-based justification served as a support to emphasize attention on how the quantities changed
together. Daeshim suggested, “1.5 plus 1.5 equals 3”:

TR: And where are you getting the 1.5 and the 1.5?
Daeshim: It’s, if width increases 1, then length increases 1.5.
Daeshim suspected that the constantly-changing rate of the change of 3 cm2 in area per 1 cm in height was related to the ratio of

length to height, 1.5:1, but was not yet sure why.

4.2.2. WoU3.2 multiple-unit explicit coordination
Over time it became clear that some students preferred to always increase height values by 1 cm, regardless of the original

dimensions of the rectangle. The TR therefore devised a task in which the students had to first predict the changing rate of change for
the growth in area of a 2-cm by 5-cm rectangle, and then make their own tables to test their predictions. She suspected that some
students might increment the tables by a unit of 2 cm for the height, while others would increment by 1 cm. In addition, by not
specifying the amount of increase for the height for which the students’ prediction should occur, the TR anticipated that the students
would identify different rates of change for the area.

Some students predicted that the changing rate of change for the area would be 5 cm2, others predicted 10 cm2, and others
predicted 20 cm2. As anticipated, the students did not initially specify for what change in height their prediction referred to.
Additionally, when testing their predictions, some students created tables with a height increase of 1 cm, while others created tables
with a height increase of 2 cm (Fig. 9). This difference in prediction led to a disagreement among the students about whether the
constantly-changing difference in the change in area should be 5 cm2 or 20 cm2. Jim claimed “It’s 5.” Bianca exclaimed, “You guys!
It’s neither! It’s, it’s, it’s 20!” Daeshim also found the constantly-changing difference of change of area to be 20 cm2, which bolstered
Bianca’s confidence that she was correct and Jim was not.

Bianca: Daeshim is right. And mine is right.
Jim: No, but, I’m doing 1. I’m going by 1.
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Tai: No, but his is going by 1 too.
Jim: He’s going by 2’s. But I’m going by 1’s.
Jim introduced the need to attend to the change in height values in the students’ respective tables. The students then realized that

the organization of their tables, particularly the magnitude of height increases, was relevant for determining the constantly-changing
rate of change in the area. They concluded that both answers were correct, depending on the choice of height increase. Tai explained,
“Yeah, 20 and 5 would both work because we’re going up by 2’s, and they’re going up by 1’s.” Tai’s articulation of a constantly-
changing rate of change in area of 20 cm2 per change in height by 2 cm is evidence of WoU3.2b Explicit Coordination of Second
Differences with a Multiple-Unit Change in Another Quantity.3 The teacher move of asking the students to create their own tables, and
task design feature to predict the constantly-changing rate of change, both supported the students in attending to coordinating
changing quantities for magnitude increases other than 1. In addition to creating tables, the TR’s continued prompts to create
drawings of the quantities in the growing rectangle situation also encouraged an explicit focus on coordinating changes in quantities
for multiple-unit iterations.

The students became accustomed to identifying different changes in height as coordinated with changes in length and constantly-
changing rates of change in area. The students typically did this as a response to the regular occurrence of needing to reconcile
different area rates that emerged as a consequence of different table organizations. As a way to navigate these differences across the
students’ work, a norm emerged that it was critical to become explicit about the amount of change for each of the relevant quantities.

4.2.3. WoU3.3 partial-unit explicit coordination
A final WoU in WoT3 entails coordination of partial units (less than 1). In the following example, the TR presented a task

comparing height and area in a table, with the magnitude of change for height being 0.5 cm. In attempting to determine the changes
in area, the students found the corresponding length values for each height value (Fig. 10a), determining that the length increased by
1.5 cm for every ½-cm increase in height. They also found that the constantly-changing rate of change for the area was 1.5 cm2 for
every ½-cm increase in height (Fig. 10b). In Jim’s words, “So, like these two, it’s 1.5 [indicates an increase across two rows, rather
than one row]. These two it’s 1.5. It’s going up 3.”

By this point in the TE, the students had developed a norm of stating the constantly-changing rate of change in area for a 1-unit
increase in height. Jim realized that claiming 1.5 cm2 was misleading, because that was not for a 1-cm increase, but rather for a ½-cm
increase. Thus, he wanted to express the constantly-changing second differences in area as 3 cm2, because he recognized that the
increase of 1.5 cm2 was coordinated with ½-cm rather than 1-cm increments in height. We call this WoU3.3b Explicit Coordination of
Second Differences with a Partial-Unit Change in Another Quantity.

Introducing a table with an increment less than 1 for the height did support the students’ partial-unit coordination of height with
length and height with changes in area. However, we posit that this instructional support would not have been effective had it not
occurred after the establishment of a norm that it was necessary to explicitly attend to the magnitude of height increases. That norm
began when the students encountered conflicting results from creating their own tables with different magnitudes of change, and it

Fig. 9. (a) Jim’s and (b) Daeshim’s tables for a 2cm × 5cm growing rectangle prediction task.

3 We would like to draw attention to a subtle nuance in the language we chose to describe the students’ WoU here. First, we describe Daeshim’s
attention to a “constantly-changing difference of change in area.” We then shifted our language to describe Tai’s “constantly-changing rate of change
in area per height.” Instructionally, we aimed to support students’ attention to construct constantly-changing rates of change of area with respect to
height (and with respect to the ratio of height to length), as described in Section 3.1. However, in analyzing the students’ WoT and WoU, we take
care to characterize a model of the students’ mathematics in our descriptions.
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continued as the TR deliberately introduced rectangles with configurations that would encourage students to increment height values
by amounts other than 1.

Table 4 summarizes the WoU under WoT3 Explicitly Quantified Coordinated Change. We found these WoU emerged in response to
several instructional supports including: teacher moves such as explicitly drawing attention to and identifying quantities in tables,

Fig. 10. (a) Ally’s and (b) Bianca’s tables for a growing rectangle growing by ½-cm in height.

Table 4
WoT3 Explicitly Quantified Coordinated Change, Related WoU, and Instructional Supports.

WoT3 Explicitly Quantified Coordinated Change (Conceiving of multi-quantity variation with explicit quantification of both quantities)

WoU Definition Data Example Instructional Support
WoU3.1a Single-Unit Explicit

Coordination of Change in
Two Quantities

Student coordinates the change in
two or more quantities together,
and also quantifies the amount of
both changes. In this case, change
in one quantity is a unit change.

Jim: “The way it kinda looks. Like, it's going up 1
over 2 every time. So it looks like it.”

Teacher Moves:• Explicitly draw attention to
and identify quantities;• Ask students to create their
own tables of two or more
quantities changing together;• Press for quantitatively-
based justifications; and• encourage students to create
drawings or diagrams and
name quantities.

WoU3.1b Explicit Coordination
of Second Differences with a
Single-Unit Change in
Another Quantity

A single-unit change in one
quantity is coordinated with the
difference in the rate of growth of
the area.

Tai: “Yeah, 20 and 5 would both work (for second
difference in area) because we're going up by 2 s (in
height) and they're going up by 1 s (in height).” Note:
this is also an example of WoU3.2b.

WoU3.2a Multiple-Unit Explicit
Coordination of Two
Quantities

Student coordinates the amount of
change for two quantities for
multiple-unit changes in one of the
quantities.

Bianca: “Each time, it's going up by eight [in length],
and each of these [height] is going up by two. The
ratio is two to eight, or one to four.”

Teacher Moves:• Prompt students to create
their own tables of two or
more quantities changing
together; and• Encourage students to create
drawings or diagrams and to
name quantities.

Task Design Feature:• Predict the changing rate of
change from a table of
quantities representing
quadratic growth.

Norm:• Be explicit about the amount
of change for each of the
relevant quantities.

WoU3.2b Explicit Coordination
of Second Differences with a
Multiple-Unit Change in
Another Quantity

A multiple-unit change in one
quantity is coordinated with the
difference in the rate of growth of
the area.

Bianca: You add 3 to the length and 6 to the area
each time.

WoU3.3a. Partial-Unit Explicit
Coordination of Two
Quantities

Student coordinates the amount of
change for two quantities for
partial-unit change in one of the
quantities.

Ally’s table: Teacher Moves:• Ask students to create their
own tables of two or more
quantities changing together;
and• Encourage students to create
drawings, diagrams, or
graphs.

Norm:• Be explicit about the amount
of change for each of the
relevant quantities.

Task Design Feature:• Investigate a quadratic
growth situation where
change in independent
quantity (Δx) is less than 1.

WoU3.3b. Explicit Coordination
of Second Differences with a
Partial-Unit Change in
Another Quantity

A partial-unit change in one
quantity is coordinated with the
difference in the rate of growth of
the area.

Daeshim’s table:
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drawings, or diagrams students created; norms such as being explicit about the amount of change for each of the relevant quantities;
and task design features. Across these ways of understanding, students quantified the change in two or more linked quantities
(WoU3.1a, WoU3.2a, WoU3.3a), and explicitly quantified coordination of second differences in the dependent variable with another
quantity (WoU3.1b, WoU3.2b, WoU3.3b). We found the instructional supports for WoU3.1a and WoU3.1b were the same (likewise for
WoU3.2a and WoU3.2b; and WoU3.3a and WoU3.3b).

4.3. Transition III: establishing dependency relations of change

The third transition occurred when the students began to articulate WoT4 Dependency Relations of Change relating height, length,
and area. Dependency relations of change means that the students recognized and identified how changes in linked quantities were
dependent on other quantities or changes in those quantities. WoT4 includes three WoU: (a) Recognition that Change in One Quantity
Determines Change in the Other (WoU4.1), (b) Identification of How Change in One Quantity Determines Change in the Other (WoU4.2), and
(c) Translation of Dependency Relations of Change to Correspondence Rules (WoU4.3). We found nine instructional supports that fostered
these WoU. The teacher moves included: (1) pressing for quantitatively-based justifications. The norms included: (2) being explicit
about the amount of change in relevant quantities, (3) students responding to and building on one another’s ideas, and (4) having
multiple student responses shared for the same task. Tasks were designed to include: (5) quadratic growth situations that allow for
multiple different ways of interpreting and explaining one’s reasoning, (6) prediction of the constantly-changing rate of change in the
dependent quantity from a table of quantities, (7) investigation of a quadratic growth situation given an initial independent quantity
(x) greater than 1, (8) investigation of a collection of tables for quadratic growth where the change in the independent quantity is
greater than 1 (Δx > 1), and varied across the set, and (9) making conjectures about generalized relationships among linked
quantities for a quadratic growth context. In the following sections we provide excerpts to illustrate how these instructional supports
encouraged the development of the three WoU.

4.3.1. WoU4.1 recognition that change in one quantity determines change in the other
The TR had been engendering norms in the classroom in which multiple student responses were elicited for a single question or

task, and students were encouraged to respond and build on each other’s ideas. Moreover, tasks allowed multiple different ways of
interpreting and explaining one’s reasoning. In this context, the students started to recognize and identify how changes in one
quantity determined changes in the other. In one example, the students were pressed to give a quantitatively-based argument for why
the constantly-changing rate of change of the area for a 1 cm by 2 cm rectangle was 4 cm2. Samantha’s table and diagram are shown

Fig. 11. Samantha’s work on the 1 × 2 growing rectangle task.
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in Fig. 11.
The TR pressed, “So, any idea why it’s 4, instead of 2 or 5 or something?” Jim explained, “When the dimensions of the box change,

then the you have your rate of rate of growth of the rate of growth are different.” The TR continued to press for students to connect
their reasoning to the quantities height and length:

TR: What does it have to do with the dimensions of the rectangle? In other words, what's the 4 got to do with the dimensions of my
original rectangle which I believe was uh…1 to 2? Bianca?
Bianca: “Well, it like…it has to do with the ratio, but I really can't explain it.”
In this exchange, Jim explained that the constantly-changing rate of change depended on the dimensions of the rectangle, but he

was not exactly sure what that relationship was. Bianca built on Jim’s idea to conjecture the it was related to the ratio (of the height to
length), but could not articulate how exactly the ratio affected the difference in the rate of growth of area. In a later exchange, Jim
expressed, “So your rate of growth (for the area) can change no matter what.”

The students understood that the quantities height and length affected the constantly-changing rate of change of the area, but
could not yet identify precisely how those quantities, or changes in them, affected the change in area. We take this as evidence of
WoU4.1 Recognition that Change in One Quantity Determines Change in the Other. The instructional goals were focused on helping
students recognize and name relationships among linked, changing quantities. Tasks were designed to support students to see a
dependency relationship between changing quantities with explicit attention to identifying those quantities in both pictures of the
growing rectangle and tables of values.

4.3.2. WoU4.2 identification of how change in one quantity determines change in the other
Eventually the students were able to transition to not only understanding that changes in one quantity determine changes in

another, but they could also identify how this occurred, particularly in terms of how changes in height and/or length affected the
constantly-changing rate of change of area. For instance, for the Four Tables task (see Fig. 12), Tai found a way to relate the
constantly-changing rate of change of the area with respect to the changes in both the height and the length. Tai said: “Take the
[difference in the change] of the area, and you divide by the difference in the length…and also divided by, the difference in height…
and, always equals 2.” Tai identified a dependency relation between ΔH, ΔL, and ΔΔA; he verbally expressed the relationship= 2H

A
L .]. Another student, Bianca, noticed that ΔΔA could be expressed in terms of change in height values: “So it’s basically like

3 [times difference in height] squared times 2.” Tai expressed this finding as the equation: 3•[difference in height]2 = [constantly-
changing difference in area].” We call this WoU4.2 Identification of How Change in One Quantity Determines Change in the Other. In this
WoU, students articulated how changes in a quantity such as height or length determined changes in the change in Area, for example.

We observed the WoU4.2 to emerge in the context of deliberate norms, teacher moves, and task design principles. The students
approached the Four Tables task by making changes in linked quantities explicit in the table representation, which had become an
established norm. Prior to the Four Tables task, the class had investigated other tasks that encouraged prediction of the difference in
the rate of growth. In one task, students predicted the constantly-changing rate of change in a rectangle’s area given only the ratio of
its height to length (recall Fig. 9b, for example). These tasks led the class to explore several student conjectures, each of which
demanded a quantitatively-based justification. We surmise that this repeated reasoning of making and testing predictions cultivated a
norm that encouraged the expression of dependency relationships. Finally, the tasks were designed to: (a) investigate a quadratic
growth situation given an initial independent quantity greater than 1, (b) investigate a collection of tables with varied changes in the
independent quantity, and (c) elicit conjectures about generalized relationships among linked quantities for a quadratic growth
context. The sequencing of tasks of the same type (such as the prediction tasks and the Four Tables task) encouraged the students to

Fig. 12. The Four Tables Task.
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engage in repeated reasoning to test and/or formalize conjectures about generalized relationships. We call attention to these gen-
eralizing activities because ultimately, this kind of generalizing also helped the students develop quadratic equations, as we elaborate
next in the final WoU.

4.3.3. WoU4.3 translations of dependency relations of change to correspondence rules
The WoU4.3 Translations of Dependency Relations of Change to Correspondence Rules emerged when the students leveraged their

coordination thinking to create and make sense of correspondence rules. At this point in the TE, many instructional supports had
become normative. The students repeatedly engaged in reasoning that led them to identify and quantify dependency relations of
change. Further, the TR implemented carefully sequenced sets of tasks aimed at prompting students to link their understandings of
dependency relations of change to a symbolic rule. For example, the TR set up a task asking students to write an equation to: (a) find
the area of the rectangle when the height is h, and (b) relate the equation to the constantly-changing rate of change of area with
respect to height. Consider Jim’s work on this task, shown in Fig. 13.

The students hypothesized that the difference in the rectangle’s length divided by the difference in the height was the coefficient=a difference in length
difference in height for the symbolic rule =Area ah2. The students explained:

Jim: 6.75 divided by three equals 2.25, so if I did 2.25 times six squared equals 81. It works. 2.25 times h2 equals area.
TR: So what works?
Daeshim: Um, dividing by um, dividing by how many are going up by each time. So, like the, what's in the length, divided, divided
by how much [inaudible] by height is equal to.4

In this exchange, the students expressed the relation between changes in two quantities as an algebraic rule. The task was
designed to have students give a far prediction for the area and to elicit a generalization of the relationship between the height and
the area. The students were accustomed to linking quantities as relationships of explicit coordinated change, and making and testing
predictions about generalized relationships. The TR made these normative practices explicit by asking the students to test their
hypothesis and to state a generalized rule. When students stated their rules, the TR then pressed for quantitatively-based justifica-
tions: “So, it's this difference in the length divided by three, and why divided by three?” to which the students gave a quantitatively-
based answer “Because that’s what you’re going up by each time.” A summary of the WoU within the WoT4 Dependency Relations of
Change is given in Table 5.

4.4. Transition IV: establishing correspondence

In the final transition to WoT5 Correspondence, we found one main WoU: Correspondence Relations Between Independent and
Dependent Quantities (WoU5.1a, WoU5.1b). We identified nine instructional supports: Teacher Moves (1) Ask students to create an
algebraic rule that relates an independent and dependent quantity; (2) Press for quantitatively-based justifications; (3) Ask students
to generalize a mathematical relationship they identified; Task Design Features (4) Investigate a quadratic growth situation where
change in independent quantity is greater than 1; (5) Make far predictions of independent and dependent quantities for a given
quadratic growth pattern; (6) Elicit generalizations of relationships between independent and dependent quantities using variables;
(7) Sequence tasks of the same type to allow students to test conjectures about generalized relationships; and Norms (8) Be explicit
about the magnitude of change for each of the relevant quantities; and (9) Make and test predictions about generalized relationships

Fig. 13. Jim’s table and equation relating height and area of a growing rectangle.

4 In reading Jim’s work in Fig. 13, note that the generalization that =a difference in length
difference in height was not written down, but rather expressed verbally by both

Jim and Daeshim.
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Table 5
WoT4 Dependency Relations of Change, Related WoU, and Instructional Supports.

WoT4 Dependency Relations of Change (conceiving of the change in one quantity as dependent on other quantities or change in other quantities)

WoU Definition Data Example Instructional Support

WoU4.1 Recognition that Change
in One Quantity Determines
Change in the Other

The magnitude of the change of one
quantity, such as height, determines
the amount of change in another
quantity, such as area (or the
difference in the rate of growth of
area). Student understands that there
is a dependency relation without
determining what that relation is.

Jim: “When the dimensions of the box
change, then the you have your rate of
rate of growth of the rate of growth are
different.”

Norms:• Attend to linked quantities as
relationships of explicit coordinated
change;• Create tables and drawings to express
relationships in quadratic growth
contexts;• Multiple student responses are shared for
a single question or task; and• Students respond to and build on each
other’s ideas.

Task Design Feature:• Quadratic growth task allows for multiple
different ways of interpreting and
explaining one’s reasoning.

Teacher Move:• Press for quantitatively-based
justifications.

WoU4.2 Identification of How
Change in One Quantity
Determines Change in the
Other

The student quantifies the relation
between change in one quantity and
the difference in the rate of growth of
change in the other quantity (area).

Tai: “(Referring to a table of values
coordinating successive height (H),
length (L), and area (A) values for a
growing rectangle) [constantly-
changing difference of change] divided
by [difference in length] equals…and,
divided by [difference in height] equals
2. [Here he verbally expressed the

relationship = 2
A
L
H .]”

Task Design Features:• Investigate a quadratic growth situation
given an initial independent quantity (x)
greater than 1;• Investigate a collection of tables for
quadratic growth where the change in the
independent quantity (Δx) is greater than
1 and varied across the set;• Elicit conjectures about generalized
relationships among linked quantities for
a quadratic growth context; and• Sequence tasks of the same type to allow
students to engage in repeated reasoning
to test and/or formalize conjectures
about generalized relationships.

Teacher Move:• Press for quantitatively-based
justifications.

Norm:• Make and test predictions about
generalized relationships among linked
quantities; and• Attend to linked quantities as
relationships of explicit coordinated
change.

WoU4.3 Translation of
Dependency Relations of
Change to Correspondence
Rules

Expressing the relation between
changes in two quantities in an
algebraic rule, such as =y ax2.
Student understands the rule in terms
of a relation of change.

Jim: “look…[the constantly-changing
difference of change] divided by 2 is
[the difference in the length]”
Bianca: “[the constantly changing rate
of change] over 2 equals [the difference
in the length].”
TR: “What does [the difference in
length] have to do with area?”
Bianca: “Distance, length. Distance
times length.”
Jim: “[difference in length] is, um, this.
The 3h squared.”

Task Design Feature:• Sequence tasks of the same type to allow
students to test conjectures about
generalized relationships.• Investigate a quadratic growth situation
where change in independent quantity
(Δx) is greater than 1; and• Elicit conjectures about generalized
relationships among linked quantities for
a quadratic growth context.

Norm:• Attend to linked quantities as
relationships of explicit coordinated
change; and• Make and test predictions about
generalized relationships among linked
quantities.

Teacher Moves:• Press for quantitatively-based
justifications; and• Ask students to generalize a
mathematical relationship they
identified.

N.L. Fonger, et al. -RXUQDO�RI�0DWKHPDWLFDO�%HKDYLRU�����������������

��



among linked quantities.

4.4.1. WoU5.1 correspondence relations between independent and dependent quantities
For each correspondence rule that the students wrote, the TR asked them to explain what each variable meant. This press for

quantitatively based explanations supported the students to write rules that were grounded in quantitative meaning. For example,
Bianca developed a relationship between the side of a growing square and the area of a growing square as “a= s2” or “the area = the
side measurement squared”. The TR prompted Bianca to further connect this rule to the relevant quantities.

TR: Area equals side squared [writes on the board]. So can you give me an example of that. Like, for instance, this point (4,16)—
Bianca: The 4 is the…4 which is the height and the 4 which is the width [gestures to the height and width of the projected square].
TR: Ok. So the 4 is the height and the length.
Bianca: Yeah.
TR: Where's the 16 in the picture?
Bianca: It's the number of squares inside.
In this example, Bianca articulated both a general correspondence rule relating independent and dependent quantities, a = s2 and

a specific instance, of how 4 cm and 4 cm are the side lengths and 16 cm2 is the area, which is why (4,16) works for the rule 42 = 16.
In related tasks, the TR asked far prediction questions for very large height values. For instance, given a table of height / area values
for a 2 cm by 9 cm rectangle with height values ranging from 2 cm to 8 cm, the TR asked the students to determine the area for a
height of 82:

TR: Yeah, so you found out the area when the height's 82. You found it to be 30,258. What if height's n?
Jim: Oh, I think I got it: n times 4.5 times n equals area. Simple. I think.
In Far Prediction tasks, the TR asked students to generalize mathematical relationships by giving prompts such as “what would

[the area] be if the height is just h?” Sometimes, those prompts were also accompanied by a prompt to write an algebraic rule. The
normative practices of being explicit about the amount of change for each of the relevant quantities, as well as making and testing
predictions about generalized relationships, remained instructional supports in WoT5 Correspondence. The students’ engagement in
repeated reasoning through a sequence of tasks of the same type was also evidence of an instructional support. A summary of these
examples with related definitions is given in Table 6.

5. Discussion and conclusion

In this research we sought to better understand how one can engender and model conceptual change in students’ WoT and WoU
quadratic growth. The students who participated in this study went through four major transitions between five WoT: Variation, Early
Coordinated Change, Explicitly Quantified Coordinated Change, Dependency Relations of Change, and Correspondence. These transitions
did not occur spontaneously. We deliberately use the word transition to convey a broader interaction modeling changes in both
students’ WoU and WoT, and changes in the instructional supports and context vis-à-vis teacher moves, norms co-developed among
the TR and the students, and task design features.

Our findings suggest that meaningful learning of quadratic growth is conceptually challenging for middle-grades students, but
possible to attain with tailored instructional supports. A rate of change approach to quadratic growth, coupled with design principles
grounded in DNR-based instruction, supported the teaching and learning of quantitative reasoning, representational fluency, and
generalization in a dynamic, visualizable context. The learning trajectory we developed offers insight into a model of students’
mathematics, and how instruction might foster a dynamic understanding of function, which is critical for success in higher-level
mathematics.

5.1. Instructional supports for students’ WoT and WoU quadratic growth

Although learning and teaching function in conceptually oriented ways remains central in secondary mathematics education,
there remain well-documented challenges for both students and teachers (e.g., Wilkie, 2019). In light of the promise of instructional
tasks with an emphasis on a rate of change perspective, there remains a need for additional evidence that links students’ meaningful
learning with effective instructional supports. This study addressed this gap by elaborating types of instructional supports for stu-
dents’ WoT and WoU about quadratic growth. From the design phase of this research, the instructional supports, particularly the
tasks, were deliberately engineered to foster and, ultimately, require students to explicitly identify the manner in which two
quantities changed together. Our instructional supports were grounded in a theoretical orientation toward the importance of fos-
tering students’ quantitative reasoning, and a mathematical goal of supporting students’ understanding of quadratic growth as a
relationship between co-varying quantities in which one quantity changes at a constantly-changing rate of change with respect to the
other. Our conceptually oriented mathematical goals remained central to our design, yet did not overshadow the importance of
building models of students’ mathematics as the TR and students interacted around a purposeful instructional task sequence.

These design decisions, and a DNR-based approach to instruction, certainly background our findings. However, our categorization
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of instructional supports into teacher moves, norms, and task design features was emergent. We found the teacher moves and norms
to explicitly foster a discourse community that focused on quantitative reasoning, representational fluency, and generalization. We
found the task design features to fall along related categories of repeated reasoning, far prediction and generalization, and doing
mathematics.

The set of instructional supports introduced in this paper offers a new framework for elaborating some of the mechanisms that can
support students’ conceptual change. We found that the tasks and task design features, teacher moves, and norms interactively
worked together to support transitions in students’ WoT and WoU. An example of the integrated nature of instructional supports was
given in Transition II; the teacher moves and task design features did not work in isolation, but rather in concert with carefully
developed norms such as being explicit about the magnitude of change in linked quantities. For instance, introducing tables in-
cremented by units less than 1 cm in height encouraged the development of a partial-unit coordination of changes in height values
with changes in area values. These tables, however, would likely not have been effective in supporting this coordination had the
students not already become accustomed to explicitly identifying the change in height. This was a norm that established slowly over
the course of multiple task sequences, and it was only once this norm was firmly in place that the students were able to begin
explicitly coordinating changes for increments less than 1. Similarly, a number of the associated teacher moves, such as pressing for
quantitatively-based justifications, were made possible and effective in the context of tasks situated in a quantitatively-rich situation
and norms encouraging students to build on one another’s ideas. It is the interaction between task design, teacher moves, and norms
that enable transitions in students’ WoT and WoU; tasks alone cannot carry the full responsibility for enacting conceptual change.

5.2. Quantitative reasoning about functions and DNR

We found that the students’ WoT about quadratic growth (WoT1 to WoT5) developed in reflexive relation with more specific WoU
within the particular content of quadratic growth. Recall the left-most column of Table 1, and the left-hand side of Fig. 4. This
research extends current characterizations of students’ conceptual learning of quadratic function (e.g., Ellis, 2011a, 2011b; Wilkie,
2019), and taxonomies for conceptual learning goals (e.g., Lobato et al., 2012) by elaborating the nature of transitions among

Table 6
WoT5 Correspondence, Related WoU, and Instructional Supports.

WoT5 Correspondence (Conceives of direct correspondence relation between independent quantity and dependent quantity)

WoU Definition Data Example Instructional Support

WoU5.1a Specific
Correspondence Between
Independent and Dependent
Quantities

Student understands a correspondence
relation between independent quantity
x (height or length) and dependent
quantities y (area) for a specific value
or values of a relationship.

TR: “Area equals side squared [writes on the
board]. So can you give me an example of that.
Like, for instance, this point (4,16)—"
Bianca: “The 4 is the…4 which is the height and
the 4 which is the width [gestures to the height
and width of the projected square].”
TR: “Ok. So the 4 is the height and the length.”
Bianca: “Yeah.”
TR: “Where's the 16 in the picture?”
Bianca: “It's the number of squares inside.”

Teacher Moves:• Ask students to create an
algebraic rule that relates an
independent and dependent
quantity;• Press for quantitatively-based
justifications; and• Ask students to generalize a
mathematical relationship
they identified.

Task Design Features:• Investigate a quadratic growth
situation where change in
independent quantity (Δx) is
greater than 1;• Make far predictions of
independent and dependent
quantities for a given quadratic
growth pattern;• Elicit generalizations of
relationships between
independent and dependent
quantities using variables; and• Sequence tasks of the same
type to allow students to test
conjectures about generalized
relationships.

Norms:• Be explicit about the
magnitude of change for each
of the relevant quantities; and• Make and test predictions
about generalized
relationships among linked
quantities.

WoU5.1b. Generalized
Correspondence Rule

Student understands the function rule
as a generalized instance of a mapping
between independent and dependent
quantities. Student expresses a
correspondence rule as a direct
relationship between an independent
quantity (height or length) and
dependent quantity (area). This may
be expressed in words, in a diagram, or
in algebraic symbols (e.g., y = mx2 or
A = ah2).

TR: “Yeah, so you found out the area when the
height's 82. You found it to be 30,258. What if
height's n?”
Jim: “Oh, I think I got it. n times 4.5 times n
equals area. Simple. I think.”
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qualitatively distinct ways of thinking. In particular, this research contributes to a growing body of work on learning trajectories that
explicitly attends to the duality of students’ broader ways of thinking about mathematics content and specific ways of understanding
mathematical ideas (Empson, 2011).

This research also provides nuance into the kinds of WoT that are involved in reasoning about quadratic function, expanding on
Harel’s (2013) framing of the kinds of broader conceptual tools students bring to bear in a specific learning context. Early Coordinated
Change and Dependency Relations of Change, for example, extend current framings of quantitative reasoning about functions, and
quadratic functions in particular. In common characterizations of students’ quantitative reasoning about functions, much attention is
given to explicit coordinated change (cf. WoT3; see also Confrey & Smith, 1994) or covariation (Castillo-Garsow, 2013; Saldanha &
Thompson, 1998), and correspondence (cf. WoT5) reasoning about functions (see also Smith, 2003).

5.3. Visualizing learning trajectories

In writing about the quadratic growth learning trajectory as a series of transitions between WoT and instructional supports we do
not intend to convey a linear progression of ideas, nor do we intend to convey a neat structuring of developmental stages that occur in
sequence. To illustrate an example of how learning is not linear, WoT5 Correspondence tended to co-occur with WoT4 Dependency
Relations of Change (this co-occurrence is illustrated in Fig. 4). We choose to introduce WoT5 last in Transition IV because it tended to
occur late in students’ thinking, and it was instructionally last in the sequence. Different students will inevitably traverse a learning
trajectory in different ways. Our construction of a learning trajectory in this paper relied on our best model from the data as guided by
our theoretical orientation. We do not claim this is the only learning trajectory for quadratic growth.

We find the metaphor of growing flowers in their appropriate habitat to be a useful tool for thinking about the interrelationships
among our theory-driven design, characterizations of students’ WoT and WoU, and articulation of instructional supports as a set of
teacher moves, task design features, and norms. In Fig. 14 we introduce a Visual Metaphor depicting transitions in both the growth of
the plant (change in the mathematics of students), as well as an interacting system of soil, water, and sun as a nourishing environment
engendering growth (instructional supports). This metaphor affords flexibility in conceptualizing both the interaction of a growing
flower with the environment, as well as the system of environmental interactions. For learning trajectories, this visual metaphor
makes these two features salient: (a) how the child interacts with the learning environment, and (b) how the tasks and task design
features, teacher moves, and norms interactively work together to support children’s learning.

Often learning trajectories positing models of students’ mathematics are taken to be “just a bunch of flowers” without due
attention to the connectedness of how flowers grow in response to the environment nurturing them. With this visual metaphor, just as
how different ecological environments nurture different kinds of plant growth, we can imagine how different kinds of learning
environments and instruction might support qualitative differences in children’s learning.5 The learning trajectory developed in this
study contributes evidence of how change in students’ WoU and WoT can be engendered by theory-driven instructional supports.
More broadly, the paper contributes an example of how learning trajectories research can attend to both the nature of students’
learning and the nature of supports for learning (beyond a sequence of tasks).

Fig. 14. A visual metaphor for a learning trajectory of change in models of students’ mathematics (flower) fostered by a system of interacting
instructional supports (sun, rain, soil).

5 We thank an anonymous reviewer for pointing out that certain plants are not suited to grow in certain climates. If a plant does not grow in a
certain environment, the problem is not with the plant. Likewise, if a child does not learn in a particular instructional setting, the problem is not with
the child. We do not intend for the visual metaphor of a learning trajectory to convey a deficit orientation toward children. Rather, the metaphor
highlights the importance of both understanding and supporting the richness of students’ mathematics as contextualized in learning environments.

N.L. Fonger, et al. -RXUQDO�RI�0DWKHPDWLFDO�%HKDYLRU�����������������

��



5.4. Concluding remarks

Theory development that links theory of learning and theory of instruction is needed (Simon et al., 2010). We see this study as an
example of research that deliberately attends to both learning and teaching to explain change in students’ WoU and WoT about
mathematics. Our learning trajectory is a networking of theories of learning and theories of instruction that are grounded in empirical
observation of students’ mathematical activity. It is a nuanced model linking conceptual learning goals, models of students’ WoT and
WoU, and instructional supports that can engender students’ transitions from one WoT to another. True to developmental research
(Brown, 1992; Gravemeijer, 1994) our theoretical orientation guided both the engineering of the learning and teaching context and
our analysis of data. For example, the TR was active in hypothesizing students’ activity, and chose to enact instructional supports that
extended students’ reasoning, effectively engendering a shift in students’ WoT. We see great potential in expanding research and
practice around the use and creation of learning trajectories that link these inter-related dimensions of teaching and learning.
Learning trajectories research can help propel the field by unifying research programs that seek to understand what students’ con-
ceptual learning of mathematical ideas and WoT can look like, and how instruction can support that learning.
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Empirical Re-Conceptualization: Bridging from Empirical Patterns to Insight and Understanding 
 

 Amy Ellis Elise Lockwood Alison Lynch 
 University of Georgia Oregon State University CSU Monterey Bay 
Identifying patterns is an important part of mathematical investigation, but many students 
struggle to explain or justify their pattern-based generalizations or conjectures. These findings 
have led some researchers to argue for a de-emphasis on pattern-based activities, but others 
argue that empirical investigation can support the discovery of insight into a problem’s 
structure. We introduce a phenomenon we call empirical re-conceptualization, in which learners 
identify a conjecture based on an empirical pattern, and then re-interpret that conjecture from a 
structural perspective. We elaborate this construct by drawing on interview data from 
undergraduate calculus students and research mathematicians, providing a representative 
example of empirical re-conceptualization from each participant group. Our findings indicate 
that developing empirical results can foster subsequent insights, which can in turn lead to 
justification and proof. 

Keywords: Generalization, Patterns, Conjecturing, Justification  
Introduction and Motivation 

Identifying patterns is a fundamental aspect of mathematical activity, with curricular 
materials and instructional techniques geared towards supporting students’ abilities to leverage 
empirically-based generalizations and conjectures. However, forming pattern-based conjectures 
is not sufficient; it is also important for students to understand and justify the patterns they 
develop. A robust body of research reveals a common phenomenon whereby students are able to 
leverage patterns in order to develop conjectures, but then struggle to understand, explain, or 
justify their results (e.g., Čadež & Kolar, 2014; Mason, 1996; Pytlak, 2015; Zazkis & Liljedah, 
2002). Indeed, these findings have led some researchers to argue for a de-emphasis on pattern-
based activity, dismissing it as unsophisticated (e.g., Carraher et al., 2008; Mhlolo, 2016).  

In contrast, we have observed a phenomenon we call empirical re-conceptualization, in 
which participants identify a pattern based on empirical evidence alone to form a conjecture, and 
then re-interpret their conjecture from a structural perspective. In this paper, we address the 
following research questions: (a) What characterizes students’ and mathematicians’ abilities to 
leverage empirical patterns to develop mathematical insights? (b) What are the potential 
affordances of engaging in empirical patterning activity? We describe and elaborate this 
construct across two participant populations, mathematicians and undergraduate students. In this 
manner, we highlight empirical re-conceptualization as a phenomenon that marks productive 
mathematical activity at multiple levels and populations. Our findings indicate that developing 
results from empirical patterns, even those that are poorly understood or unjustified in the 
moment, can serve as a launching point for subsequent insights, including verification, 
justification, and proof.  

Literature Review and Theoretical Perspectives 
There is ample evidence that students are adept at identifying and developing mathematical 

patterns (e.g., Blanton & Kaput, 2002; Pytlak, 2015; Rivera & Becker, 2008). However, the 
patterns students identify may not always be those that are mathematically useful. As Carraher et 
al. (2008) noted, a pattern is not a well-defined concept in mathematics, and there is little 



agreement on what constitutes a pattern, much less its properties and operations. Students who 
do identify patterns can then experience difficulties in shifting to algebraic thinking (e.g., Čadež 
& Kolar, 2015, Moss, Beatty, McNab, & Eisenband, 2006; Mason, 1996). Further, both 
secondary and undergraduate students who work with patterns struggle to justify them 
(Hargreaves et al., 1998; Zazkis & Liljedah, 2002). An emphasis on empirical patterning without 
meaning can promote the learning of routine procedures without understanding (Fou-Lai Lin et 
al., 2004; MacGregor & Stacey, 1995), or the generalization of a relationship divorced from the 
structure that produced it (Küchemann, 2010). Further, students’ challenges with extending 
pattern generalization to meaningful learning has been shown to contribute to difficulty in 
multiple domains, including functions (Ellis & Grinstead, 2008; Zaslavsky, 1997), geometric 
relationships (Vlahović-Štetić, Pavlin-Bernardić, & Rajter, 2010), and combinatorics 
(Kavousian, 2008; Lockwood & Reed, 2016), among others. 

Despite these drawbacks, researchers also point out the affordances of empirical investigation 
and pattern development. The activity of developing empirically-based conjectures can support 
the discovery of insight into a problem’s underlying structure, which can, in turn, foster proof 
construction (Tall et al., 2011; de Villiers, 2010). The degree to which pattern generalization is 
an effective mode of proof development is an unresolved question, but there is evidence that 
students can engage in a dynamic interplay between empirical patterning and deductive 
argumentation (e.g., Schoenfeld, 1986). Similarly, research mathematicians regularly engage in 
experimentation and deduction as complementary activities (de Villiers, 2010). It may be that 
students become stuck in a focus on empirical relationships divorced from structure because they 
lack sufficient experience with this way of thinking. Küchemann (2010) found that with practice, 
students could learn to glean structure from patterns. Similarly, Tall et al. (2011) argued that 
attention to the similarities and differences in empirical patterns could support the development 
of mathematical thinking and proof. These works offer a precedent for positioning empirical 
patterning as a bridge to insight and deduction. 

Structural reasoning. Harel and Soto (2017) introduced five major categories of structural 
reasoning: (a) pattern generalization, (b) reduction of an unfamiliar structure into a familiar one, 
(c) recognizing and operating with structure in thought, (d) epistemological justification, and (e) 
reasoning in terms of general structures. The first category, pattern generalization, further 
distinguishes between two types of generalizing: Result pattern generalization, and process 
pattern generalization (Harel, 2001). Result pattern generalization (RPG) is a way of thinking in 
which one attends solely to regularities in the result. The example Harel gives is observing that 2 
is an upper bound for the sequence √2 ,#2	+ √2, &2+ #2 + √2, … because the value checks 
for the first several terms. RPG is typically the type of pattern generalization observed in studies 
in which students then struggle to shift from recursive to explicit relationships or justify their 
patterns (e.g., Čadež & Kolar, 2015; Schliemann, Carraher, & Brizuela, 2007). When we refer to 
the identification of a pattern based on empirical evidence, we are referring to RPG. In contrast, 
process pattern generalization (PPG) entails attending to regularity in the process, even if that 
attention may first be initiated by noticing a regularity in the result (Harel, 2001). To extend the 
above example, Harel discussed how one might engage in PPG to determine that there is an 
invariant relationship between any two consecutive terms of the sequence, 𝑎( ) * = #𝑎( + 2, and 
therefore reason that all of the terms of the sequence are bounded by 2 because √2 < 2.  

We define empirical re-conceptualization as the process of re-interpreting a generalization or 
conjecture from a pattern (identified by RPG) from a structural perspective. By structural 



perspective, we mean the five major categories of structural reasoning, with the exception of the 
RPG sub-category of pattern generalization. Thus, a student could reason about the regularity in 
process from one term to the next of a sequence (PPG). One could also reduce unfamiliar 
structures into familiar ones, either by constructing new structures or by forming conceptual 
entities. One may also carry out structural operations in thought without performing calculations, 
reason in terms of general structures (either by reasoning with conceptual entities or reasoning 
with operations on conceptual entities), or engage in epistemological justification. In short, re-
interpreting a generalization or conjecture from a structural perspective entails the ability to 
recognize, explore, and reason with general structures. 

Figurative and operative thought. The other construct we draw upon to characterize the 
phenomenon of empirical re-conceptualization addresses a distinction in mental activity (Piaget, 
1976, 2001; Steffe, 1991; Thompson, 1985). When engaged in figurative activity, one attends to 
similarity in perceptual or sensorimotor characteristics. In contrast, operative mental activity 
entails attending to similarity in structure or function through the coordination and 
transformation of mental operations. For instance, a student could associate the sine curve with 
circular motion through conceiving both as representing an invariant relationship of co-varying 
quantities (an operative association), or through conceiving both as smooth because the motion is 
perceived as continuous (a figurative association) (Moore et al., 2019). A shift from RPG to PPG 
is often accompanied by a shift from figurative to operative mental activity, and we consider 
operative activity to be a hallmark of the ability to reason structurally.  

Methods 
We drew on interview data from two participant sources, mathematicians and undergraduate 

students, both stemming from larger projects investigating participants’ use of examples to 
generalize, conjecture, and prove.  

Mathematician data. The mathematician data consisted of two sets of hour-long interviews. 
Thirteen mathematicians participated in Interview 1, and 10 continued for Interview 2. The 
participants included 7 professors, 3 postdoctoral researchers, and 3 lecturers. Twelve 
participants hold a Ph.D. in mathematics, and one holds a Ph.D. in computer science. There were 
8 men and 5 women. Each interview presented two novel mathematics tasks, which were chosen 
to be accessible (i.e., they did not require specialized content knowledge) but not trivial (i.e., a 
solution was not immediately available). For the purposes of this report, we focus on the 
Interesting Numbers Task (Andreescu, Andrica, & Feng, 2007), which we phrased as follows: 
“Most positive integers can be expressed with the sum of two or more consecutive integers. For 
example, 24 = 7 + 8 + 9, and 51 = 25 + 26. A positive integer that cannot be expressed as a sum 
of two or more consecutive positive integers is therefore interesting. What are all the interesting 
numbers?” Below we highlight an exemplar from one mathematician’s work on the interesting 
numbers task, the work of Dr. Fisher.  

Undergraduate data. The undergraduate data consisted of a set of hour-long individual 
interviews with 10 undergraduate male calculus students. The students solved a set of tasks 
designed to engender generalizing activity (and ultimately to generalize the binomial theorem). 
For this paper, we report on the Passwords Task, which asked students for the number of 
passwords of length 3, 4, 5, and eventually length n, which consisted of the characters A or B, 
where repetition was allowed. We asked the students to create tables to organize passwords with 
a certain number of As, and we also had them reason about the total number of passwords of a 
given length. Below we focus on one student’s work, Raoul, and his reasoning about the total 
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Figure 2. Dr. Fisher’s refined table attending to sums. 

Dr. Fisher: Oh. I see. I see what's happening. […] So, what I see here is that they differ by 1, 
right? And then they differ by 2. Right? So, I have these numbers [in the first column] 
and then automatically get these minus 1. […] And then I automatically get those 
numbers minus 1 and then I get them minus 2 also. And then I get the minus 3 et cetera. 
So, this actually should tell me most of them by just subtracting. 

 
This insight led Dr. Fisher to formalize the non-interesting numbers as 3𝑛25 − 1 − 2 −⋯−𝑘, which she simplified to 3𝑛25−	3𝑘25. However, she still did not understand why the powers of 

2 did not have that form. To try to answer that question, she returned again to the table and 
rewrote a third version, this time listing the values of the sums rather than the sums themselves 
(Figure 3). She evaluated the first row of sums (1+2, 2+3, 3+4, …), then filled in the rest of the 
table using the diagonal relationship she observed earlier.  

 

 
Figure 3: Dr. Fisher’s third refined table. 

During this activity, Dr. Fisher noticed a pattern in the second row, “Now what I’m getting 
here is that these are multiples of 3. Yes, I got it!” To prove this observation, she represented an 
arbitrary element of the first row by 2k+1, then used the diagonal relationship to justify that the 
next element down the diagonal would be (2k-1) + (k-2) = 3(k-1). She gave a similar proof for 
the multiples of 5 appearing in the 4th row, then realized that a generalized version of the 
argument would prove that every multiple of 2k+1 (above a certain point) will appear in the 2k 
row. Her argument proved that every multiple of an odd number is non-interesting, so every 
interesting number must have no odd factors (i.e. be a power of 2). 

Dr. Fisher initially engaged in RPG, generating a conjecture based solely on the numerical 
pattern she observed in her list of interesting numbers. Once she had the conjecture, however, 
she shifted from figurative to operative activity, attending to how the sums changed as the 
number of summands and starting value changed within her table. Through her analysis of the 
structural relationships in the data, Dr. Fisher was able to engage in multiple rounds of PPG, 
forming generalizations that led to a partial proof of her conjecture. 
Undergraduate Case: Raoul 



Raoul was an undergraduate calculus student at a large public university. In his work on the 
Passwords Task, Raoul leveraged an empirical pattern to develop a conjecture that for an n-
character password made of As and Bs, there would be 2n total passwords. In the excerpt below, 
Raoul explained that he saw the pattern based his prior work determining 3-character, 4-
character, and 5-character passwords. However, he did not understand why the total number of 
passwords was 2n:  

 
Raoul: Over here I get, for 3 characters, I get 8 numbers. Four characters, 8 times 2, 16. Five 

characters, 16 times 2. Oh! 2 power n. 
Interviewer: Okay. Why did you think that? 
Raoul: Well I guess, I just started seeing the pattern. I mean 8 is the 2 cubed. I knew that, and 

I knew that 5 is…no sorry, 32 is 2 power 5. I knew that too, and here is the same, 2 
power 4. 

Interviewer: Okay. 
Raoul: So, I guess, 2 power n. 
Interviewer: Cool and can you explain, so, why does that make sense? Does it? Why do you 

think that’s true? 
Raoul: Um, it doesn’t make sense to me why it has to be 2 power n. Two power n. I have no 

idea. 
 
Raoul recognized the familiar numbers 8, 16, and 32 as powers of 2, a recognition based in 

figurative activity. He then engaged in RPG, conjecturing that an n-character password would 
have length 2n, but he could not justify it combinatorially. The interviewer then asked Raoul why 
the number of passwords doubled from 4 to 5 characters: 

 
Interviewer: Why would it make sense, let’s say from 4 to 5 it doubles, times 2. Why would 

there be twice as many possibilities here as there were in the 4 case? 
Raoul: That’s what I’m trying to think. If I can figure that out, I would be able to find why it 

makes sense to be 2 power n. 
Interviewer: Okay, what would you guess for a 2-character password? 
Raoul: Two-character passwords? Four. 
Interviewer: Okay, how about for 1-character password? 
Raoul: There’d be only 2. A and B, so if it’s 2, AB, AA, BA, BB. Hmm. Oh, hold up.  
 
Reflecting on a 1-character and 2-character password, Raoul experienced an insight. He 

began to relate the doubling phenomenon to the combinatorial context of adding another 
character: “So, I noticed that this is the pattern that I got with 2 characters, so what I find that, 
when I increase it to 3 characters there will be, another character will be adding up, and that 
could either be A or B, so the number of passwords would be doubled.” Important in Raoul’s 
explanation is his shift of attention to what occurred when he moved from the 2-character case to 
the 3-character case. This marked a shift to operative activity, in that he was now coordinating 
the mental operation of imagining what happens when increasing the password length by one 
character. This also fostered PPG, as Raoul could now attend to a regularity in the process and 
understand why the number of passwords would double each time the length grew by 1. He was 
then able to explain his reasoning with the case of moving from a 3-character password to a 4-



character password: “One character has to be added up, and that character can either be A or B. 
So, for this one pattern, for 3 characters, there’s going to be 2 [options], there’s going to be one 
more pattern if I make it a 4 character.”  

Raoul began by making an empirically-based generalization that the total number of 
passwords would be 2n, but he could not justify his general statement. However, the 
development of his initial generalization was still important for Raoul’s progress. Before he 
wrote 2n, the doubling aspect of the relationship was not foregrounded. Once Raoul had 
produced a generalization, the interviewer could then ask about doubling, which provided an 
opportunity for Raoul to shift to operative activity, PPG, and ultimately produce a combinatorial 
justification for why the number of passwords would double when adding a character.  

Discussion and Implications 
In this paper we have introduced a new phenomenon, empirical re-conceptualization, in 

which learners develop an initial conjecture based on empirical evidence or RPG, and then are 
able to re-conceptualize that generalization or conjecture from a structural perspective. Dr. Fisher 
began with an empirically-based conjecture, but that conjecture enabled her to then begin an in-
depth investigation that supported an attention to how the sums changed as the summands and 
starting values change. She was able to reduce unfamiliar structures into familiar ones and reason 
in terms of general structures, both elements of structural reasoning. Raoul was similarly able to 
leverage his empirically-based generalization, 2n, by shifting from RPG to PPG, and he did so by 
carrying out structural operations in thought, imagining what would occur when shifting from a 
2-character password to a 3-character password, and again from a 3-character password to a 4-
character password. Our findings indicate that empirical re-conceptualization can serve as a 
vehicle to transform empirical patterns into meaningful sources of verification, justification, and 
proof. This confirms de Villiers’ (2010) claim that “experimental investigation can also 
sometimes contribute to the discovery of a hidden clue or underlying structure of a problem, 
leading eventually to the construction or invention of a proof” (p. 215). 

Certainly, students frequently identify patterns that they do not understand or cannot justify; 
this remains a common problem. A danger remains that students will engage in empirical 
investigation but then not seek to re-conceive their resulting generalizations or conjectures 
structurally. Our interest is in understanding why some participants in our study were able to 
engage in empirical re-conceptualization, while others were not. We note that both Raoul and Dr. 
Fisher had mechanisms by which they could shift their attention towards structural relationships. 
At times this ability was spontaneous (in the case of Dr. Fisher) and at other times, it required 
direction from the interviewer (in the case of Raoul). This suggests that directing students 
towards the contextual genesis of the patterns they generalize may be an effective strategy for 
supporting empirical re-conceptualization. In addition, it suggests that when students engage in 
empirical patterning activities, it is preferable to have them do so within a particular, concrete 
context. Ultimately, our findings indicate that the activity of generalizing empirical patterns can 
serve as a bridge to more generative and productive mathematical activity. 
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Identifying patterns is an important part of mathematical reasoning, but many students struggle 
to justify pattern-based generalizations. Some researchers argue for a de-emphasis on patterning 
activities, but empirical investigation has also been shown to support discovery and insight into 
problem structures. We introduce a phenomenon we call empirical re-conceptualization, which 
is the development of a generalization based on an empirical pattern that is subsequently re-
interpreted from a structural perspective. We define and elaborate empirical re-
conceptualization by drawing on data from secondary and undergraduate students, and identify 
three major affordances: Empirical re-conceptualization can serve as (a) a source of 
verification, (b) a means of justification, and (c) a vehicle for generating insight. 
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Objective: Leveraging the Power of Pattern-Based Generalizations 
Recognizing and developing patterns is a critical aspect of mathematical reasoning. Many 

students are adept at recognizing and formalizing patterns (Pytlak, 2014), but they can also 
struggle to understand, explain, and justify those very patterns they develop (Čadež & Kolar, 
2014). One source of students’ difficulties may rest with the empirical nature of those 
generalizations. Students can become overly reliant on examples and infer that a universal 
statement is true based on a few confirming cases (Knuth, Choppin, & Bieda, 2009). One 
potential solution is to help students understand the limitations of empirical evidence and thus 
recognize the need for deductive arguments (e.g., Stylianides & Stylianides, 2009). These 
approaches have shown some success in helping students see the limitations of examples, but 
they also frame empirical reasoning strategies as stumbling blocks to overcome. 

In contrast, we have identified a phenomenon that we call empirical re-conceptualization, in 
which students identify a pattern, form an associated generalization, and then re-interpret their 
findings structurally. From this perspective, students can bootstrap their pattern-based 
generalizations into mathematically meaningful insights and arguments. In this paper, we 
describe and elaborate the construct of empirical re-conceptualization and address the following 
questions: (a) What characterizes students’ abilities to leverage pattern-based generalizations in 
order to develop mathematical insights? (b) What are the conceptual affordances of empirical re-
conceptualization? We offer a secondary example, discuss the affordances experienced, and 
consider ways in which instruction can support the practice of empirical re-conceptualization. 

The Drawbacks and Opportunities of Empirical Reasoning 
While an emphasis on patterning that lacks meaning can promote the learning of routine 

procedures without understanding (Fou-Lai Lin et al., 2004), there are also a number of 
affordances that can arise from empirical investigation. The act of developing empirically-based 
generalizations can foster the discovery of insight into a problem’s structure, which could 
consequently support proof development (de Villiers, 2010). The degree to which pattern 



generalization is an effective route to proof is an open question, but there is evidence that 
students can and do engage in a dynamic interplay between empirical patterning and deductive 
argumentation (e.g., Schoenfeld, 1986).  

Students lack sufficient experience with developing meaning from patterns. Curricular 
materials emphasize patterning activities that end with a generalization, typically an algebraic 
rule; developing an associated justification is seldom emphasized in standard classroom tasks. In 
fact, students typically receive little, if any, explicit instruction on how to strategically analyze 
examples in developing, exploring, and proving generalizations (Cooper et al., 2011). We 
propose that empirical re-conceptualization can be one way to provide opportunities to develop 
mathematical insight and deductive argumentation from pattern-based generalizing activities.  

Theoretical Perspectives: Structural Reasoning  
Harel and Soto (2017) identified five major categories of structural reasoning: (a) pattern 

generalization, (b) reduction of an unfamiliar structure into a familiar one, (c) recognizing and 
operating with structure in thought, (d) epistemological justification, and (e) reasoning in terms 
of general structures. The first category further distinguishes between result pattern 
generalization (RPG) and process pattern generalization (PPG) (Harel, 2001). RPG is a way of 
thinking in which one attends solely to regularities in the result. The example Harel gave is 

observing that 2 is an upper bound for the sequence √2 ,#2	+ √2, &2+#2 + √2, … because 
the value checks for the first several terms. When we refer to empirical re-conceptualization and 
the identification of a pattern based on empirical evidence, we are referring to RPG. In contrast, 
PPG entails attending to regularity in the process. Harel discussed how one might engage in PPG 
to determine that there is an invariant relationship between any two consecutive terms of the 
sequence, 𝑎()* = #𝑎( + 2, and therefore reason that all of the terms of the sequence are 
bounded by 2 because √2 < 2.  

We define empirical re-conceptualization as the process of re-interpreting a generalization 
based on RPG from a structural perspective. By structural perspective, we mean engaging in any 
of the following activities: (a) shifting from RPG to PPG; (b) reducing an unfamiliar structure 
into a familiar one; (c) carrying out operations in thought without performing calculations; (d) 
forming and reasoning with a new conceptual entity; or (e) shifting from figurative to operative 
activity. In short, re-interpreting a generalization from a structural perspective entails the ability 
to recognize, act upon, and reason with general structures.  

Methods 
Barney (a 7th-grade student) and Homer (a 9th-grade student) participated in a paired teaching 

experiment (Steffe & Thompson, 2000), which took place across five sessions averaging 75 
minutes each. An aim of the teaching experiment was to investigate the students’ generalizations 
about the areas and volumes of growing figures, and then to study their development of 
combinatorial reasoning by exploring the growing volumes of hypercubes and other objects in 4 
dimensions and beyond. 

All teaching sessions were videoed and transcribed. We first drew on Ellis et al.’s (2017) 
RFE Framework to identify generalizations, and then used open coding to infer categories of 
generalizing activity based on the participants’ talk, gestures, and task responses. We then 
identified an emergent set of relationships between the participants’ patterning activities and the 
types of generalizations they formed; this yielded the category of empirical re-conceptualization. 



In a final round we re-visited the data corpus in order to identify all instances of empirical re-
conceptualization, the generalizations that led to each instance, and the subsequent explanation 
or justification. In this manner we were able track the changes in students’ activity after engaging 
in re-conceptualizing, which led to the identification of the affordances detailed below. 

Results 
We found three major affordances of engagement in empirical re-conceptualization. Namely, 

empirical re-conceptualization can serve as (1) a source of verification, (2) a means of 
justification, and (3) a vehicle for generating insight. Within the third category, we identified 
three types of insight: (3a) re-interpretation within a different context or representational register, 
(3b) the creation of a new generalization, and (3b) the establishment of a new piece of 
knowledge. In order to characterize the phenomenon of empirical re-conceptualization and its 
associated affordances, we present an exemplar case.  
Secondary Case: Growing Volumes in Three Dimensions and Beyond 

Barney and Homer explored the added volumes of three-dimensional, four-dimensional, and 
other n-dimensional “cubes” that grew uniform amounts in every direction. They began by 
determining the added volume of an n by n by n cube that grew 1 cm in height, width, and 
length. The students worked with physical cubes to consider the component pieces and 
determined that the added volume would be 3n2 + 3n + 1. When they then investigated the added 
volume of a cube that grew x cm in each direction, the students simply generalized from their 
prior result. Homer wrote “(3x)n2 + (3x)n + x2”, replacing the 3 in the first two terms of his 
original expression with a 3x, and replacing the 1 in the last term, which he had conceived as 12, 
with an x2. Unsure about the correctness of this expression, Barney said, “let me model on the 
cube”, which he used to verify that the first term, 3xn2, was correct because it represented three 
additional rectangular prisms, each with a volume of xn2. Both students then realized errors in 
the next two terms. Barney explained that the second term should actually be 3x2n “because 
you’re adding 3 of x by x by n.” Both students also realized the final term would have to be x3. 

The students’ original generalization was based on the result of their prior activity in building 
up additional volume components, rather than attending to the process by which they grew the 
cube’s volume. However, Barney then experienced a need to verify Homer’s result, which led to 
re-conceptualizing the generalization within the context of volume. He took the algebraic 
structure and made sense of it geometrically, in the process coordinating his mental activity of 
constructing component volumes and translating those quantities to algebraic representations.  

The students eventually went on to determine expressions of added volume for the 2nd, 3rd, 
and 4th dimensions, which the teacher-researcher wrote in Figure 1. Homer then saw a pattern in 
the expressions, exclaiming, “Oh, I know what’s happening!”: 

Homer: It is simple, as 2 – sorry I’m writing on it. [Begins to draw the blue lines.] Two 
plus 1 is 3, and 2 plus 1 is 3, 3 plus 3 is 6, 3 plus 1 is 4, 1 plus 3 is 4. [Writes the 
red numbers.] 

TR: Whoa. Huh. 
Barney: Wow. It’s just that one triangle, Pascal’s triangle, right? 
Homer recognized the pattern in which each coefficient could be determined by adding the 

sum of the coefficients of the prior consecutive terms. Pascal’s triangle then became a 
mechanism for determining the additional volume of a 5th-dimensional solid, which the students 
wrote as “5n4 + 10n3 + 10n2 + 5n1 + 15”. They then decided to check their answer by listing the 
arrangements of three ns and two 1s (the 10n3) case, which served to verify that the coefficient 



was indeed 10. Barney then realized that given that they had verified the 10n3 case, they did not 
need to check the 10n2 case: “We can basically just take this and switch all the ns to 1s and 1s to 
ns.” This explanation of symmetry caused Homer to then extend that finding to new cases: “Oh, 
and you know what? You can do the same for these (pointing to the 5n4 and the 5n1 terms)…you 
can just replace these 1s for ns.”  

       
Figure 1: Expressions for added volume in the 2nd, 3rd, and 4th dimensions 

 
Homer and Barney initially developed a generalization based on Pascal’s triangle, which 

allowed them to determine the expression for added volume. Their subsequent listing activity 
enabled the students to re-interpret that expression combinatorially. That pattern allowed the 
students to engage in a verification process and subsequently reason about outcomes to develop a 
new insight, that there must be symmetry in the coefficients. Barney was able to reflect on his 
operations in listing the ten outcomes and realize that there was nothing special about the 
characters n and 1, and that they could simply be reversed in the case of determining the 
combinations of two ns and three 1s. This then supported Homer’s new generalization. 

Discussion 
Empirical re-conceptualization can serve as a source of verification, such as when Barney 

checked the algebraic expression for adding x cm to a cube by appealing to the notion of volume. 
It can also serve as a source of justification, which we saw when Barney justified Homer’s 
pattern of xs in the expression 3xn2 + 3x2n + n3. We also saw the students developing insight. 
They developed new knowledge and understanding, such as when Barney generated the idea that 
the coefficient of n3 must be identical to the coefficient of n2, which then supported Homer’s 
ability to establish a new generalization that could be extended to the other terms, 5n4 and 5n. 

These affordances suggest that empirical re-conceptualization can serve as a vehicle to 
transform empirical patterns into meaningful sources of verification, justification, and insight. 
Certainly, students may also identify and generalize patterns that they do not understand or 
cannot justify. A danger is that students will engage in empirical investigation but then not seek 
to re-conceive their findings structurally. We find it useful to explore the conditions that can best 
support students’ transition to the productive next step, that of empirical re-conceptualization. 
Our data suggest that directing students back towards the contextual genesis of the patterns they 
generalize may be an effective strategy for supporting empirical re-conceptualization. With the 
support of concrete contexts for meaning making, the activity of generalizing empirical patterns 
can serve as a bridge to more generative and productive mathematical activity.  
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Abstract: Identifying patterns is an important part of mathematical investigation, but many 
students struggle to justify their pattern-based generalizations. These findings have led some to 
argue for a de-emphasis on patterning, but others argue that it can support insight into a 
problem’s structure. We introduce a phenomenon, empirical re-conceptualization, in which 
learners generalize based on an empirical pattern, and then re-interpret it from a structural 
perspective. We elaborate this construct by providing a representative example of empirical re-
conceptualization from two secondary students. Our findings indicate that developing empirical 
results can foster subsequent insights, which can in turn lead to justification and proof.  

Introduction: The affordances and constraints of empirical investigation 
Developing patterns is a key aspect of mathematical activity, but students are often discouraged from relying on 
empirical evidence to defend mathematical claims. Researchers posit that a primary source underlying students’ 
struggles to justify their conjectures concerns their treatment of empirical evidence. Students can be overly reliant 
on examples and often infer that a mathematical statement is true on the basis of checking a small number of cases 
(Knuth, Choppin, & Bieda, 2009). Students can be adept at leveraging patterns in order to develop generalizations, 
but then struggle to understand, explain, and justify their results (Čadež & Kolar, 2014). One potential solution is 
to help students understand the limitations of empirical evidence as a means of mathematical justification and 
thus recognize the need for proof (e.g., Stylianides & Stylianides, 2009). These approaches have shown some 
success in helping students learn the limitations of examples, but they also frame empirical reasoning strategies 
as stumbling blocks to overcome.  

In contrast, we have identified a phenomenon that we call empirical re-conceptualization, in which 
students identify empirical patterns, form associated generalizations, and then re-interpret their findings from a 
structural perspective. Rather than positioning example-based reasoning as an unsophisticated approach to de-
emphasize, we identify the ways in which students can bootstrap empirical reasoning into mathematically 
meaningful insights. In this paper, we address the following questions: (a) What characterizes students’ abilities 
to leverage empirical patterns in order to develop mathematical insights? (b) What are the conceptual affordances 
of engaging in empirical patterning activity? We describe and elaborate this construct with an example with 
secondary students, and discuss the finding that developing results from empirical patterns can serve as a launch 
point for subsequent insight, including verification, justification, and proof. 

The interplay between empirical reasoning and deductive reasoning 
It is generally recognized that students’ arguments are expected to progress from empirically-based justifications 
to deductive proofs. Indeed, various reasoning hierarchies have been proposed that reflect this expected 
progression (e.g., Balacheff, 1987). Although these hierarchies delineate levels of increasing sophistication in 
students’ arguments, they do not sufficiently account for how students’ empirical reasoning will make the 
transition to deductive reasoning. Indeed, many students find that transition challenging to navigate, and this is a 
challenge that persists even at the undergraduate level (Stylianides & Stylianides, 2009).  

Despite these potential drawbacks, many researchers also point to the affordances of empirical 
investigation. Developing empirically-based generalizations can support the discovery of insight into a problem’s 
underlying structure, which can, in turn, foster proof construction (de Villiers, 2010). Students can and do engage 
in a dynamic interplay between empirical patterning and deductive argumentation (Küchemann, 2010). de Villiers 
(2010) noted that mathematicians regularly engage in experimentation and deduction as complementary activities, 
and Tall et al. (2008) argued that students can bootstrap their empirical investigations into more sophisticated 
knowledge structures. It may be that students become stuck in a focus on empirical relationships because they 
lack sufficient experience with developing structural meaning from patterns. Curricular materials emphasize 
patterning activities that begin and end with the development of a generalization, typically presented as an 
algebraic rule. Forming a connection between the generalization and a structural justification for its 
reasonableness is seldom emphasized in standard classroom tasks. However, given the above evidence that 
meaningful connections can be developed from empirical investigation, we advocate for positioning empirical 
patterning as a bridge to insight and deduction.  



Structural Reasoning and Figurative versus Operative Activity 
Considering structure to be something made up of a number of parts that are held together in a particular 

manner, Harel and Soto (2017) introduced five major categories of structural reasoning: (a) pattern generalization, 
(b) reduction of an unfamiliar structure into a familiar one, (c) recognizing and operating with structure in thought, 
(d) epistemological justification, and (e) reasoning in terms of general structures. The first category further 
distinguishes between two types of generalizing: Result pattern generalization (RPG) and process pattern 
generalization (PPG) (Harel, 2001). RPG is a way of thinking in which one attends solely to regularities in the 
result. The example Harel gave is observing that 2 is an upper bound for the sequence √2 ,#2	+ √2, &2 +#2 + √2, … because the value checks for the first several terms. When we refer to empirical re-
conceptualization and the identification of a pattern based on empirical evidence alone, we are referring to RPG. 
In contrast, PPG entails attending to regularity in the process. To extend the above example, Harel discussed how 
one might engage in PPG to determine that there is an invariant relationship between any two consecutive terms 
of the sequence, 𝑎()* = #𝑎( + 2, and therefore reason that all of the terms of the sequence are bounded by 2 
because √2 < 2.  

We also draw on a distinction between forms of mental activity. Figurative activity involves attending 
to similarity in perceptual or sensorimotor characteristics (Piaget,  2001). For instance, one could associate the 
sine curve with circular motion through conceiving both the graphical register and the physical register as 
representations of smooth continuous motion (Moore et al., in press). In contrast, operative activity entails 
attending to similarity in structure or function through the coordination and transformation of mental operations. 
To continue the above example, a student could associate the sine curve with circular motion through conceiving 
both as representing an invariant relationship of co-varying quantities. A shift from RPG to PPG is often 
accompanied by a shift from figurative to operative mental activity, and we consider operative activity to be a 
hallmark of the ability to reason structurally. We therefore define empirical re-conceptualization as the process of 
re-interpreting an empirically-determined generalization from a structural perspective, which can include 
engaging in any of the five major categories of structural reasoning, with the exception of the RPG sub-category 
of pattern generalization, or shifting from a figurative to an operative association. 

Methods 
We conducted a paired teaching experiment over 5 sessions, with each session lasting between 30 and 90 minutes. 
Homer was a 9th-grade student who had completed Algebra I, and Barney was a 7th-grade student who had 
completed pre-algebra. Our aim was to investigate the students’ conjectures and generalizations about the areas 
and volumes of growing figures, and then to investigate their development of combinatorial reasoning by 
exploring the growing volumes of hypercubes and other objects in 4 dimensions and beyond.  

All teaching sessions were videoed and transcribed. Using the constant-comparative method, we 
analyzed the data in order to identify the participants’ generalizations and to characterize the mental activity that 
fostered them. For the first round of analysis we drew on Ellis et al.’s (2017) RFE Framework, and in subsequent 
rounds we used open coding to infer categories of generalizing based on the participants’ talk, gestures, and task 
responses. The next round of analysis supported the development of an emergent set of relationships between the 
participants’ patterning activities and their generalizations; this yielded the emergent category of empirical re-
conceptualization. In a final round we re-visited the data corpus in order to identify all instances of empirical re-
conceptualization and the initial generalizations that led to each instance. In this manner we were able to determine 
the characteristics of empirical re-conceptualization and track the changes in students’ generalizing after engaging 
in re-conceptualizing, which led to the identification of the affordances detailed below. 

Results 
In order to characterize the participants’ abilities to leverage empirical patterns to develop mathematical insights, 
we present an exemplar case. Barney and Homer initially worked with the following task: “Say you have an n by 
n by n cube, and you add 1 cm to the height, width, and length. What is the added volume of the new cube?” Both 
students worked with blocks to think about the component pieces of a larger cube and reason that the added 
volume would be 3n2 + 3n + 1. The teacher-researcher then gave the same task for a four-dimensional n by n by 
n by n hypercube. In order to introduce combinatorial reasoning as a way to ground sense-making, she asked the 
students to consider the dimensions height, width, length, and a fourth dimension introduced as “slide”. Homer 
and Barney determined that when adding 1 cm to the n by n by n slice of a hypercube, they would have four 
outcomes: a) 1 × n × n × n; b) n × 1 × n × n; c) n × n × 1 × n; and d) n × n × n × 1. Both students could then 



justify why the n term and the n3 term should have a coefficient of 4. The students then re-wrote their expressions 
to be “4n3 + 4n2 + 4n + 14”. This expression is incorrect – the coefficient for the n2 term is not 4 – but it is an 
understandable generalization. It was a result of Barney and Homer generalizing from their operative activity of 
determining the coefficient of n3 to be 4, as well as from a figurative extension of the numeric structure of the 
three-dimensional case to the four-dimensional case.  

The teacher-researcher then asked the students to list out all of the options for the n2 coefficient. They 
correctly listed 6 options for arranging two n’s and two 1’s into four slots. By this point, the students had now 
correctly determined expressions for the second, third, and fourth dimensions, and the teacher-researcher wrote 
down their expressions in Figure 1. The expressions caused Homer to have a realization: 

 

 
Figure 1. Expressions for added volume in the 2nd, 3rd, and 4th dimensions 

 
 Homer: I know what is happening Barney. It is simple, as 2 – sorry I’m writing on it. [Begins to draw 
  the blue lines]. Two plus 1 is 3, and 2 plus 1 is 3, 3 plus 3 is 6, 3 plus 1 is 4, 1 plus 3 is 4. 
  [Writes the red numbers into the figures.] 
 TR: Whoa. Huh. 
 Barney: Wow. It’s just that one triangle, Pascal’s triangle, right? 
 
Homer recognized a pattern, and he knew that each coefficient for each term could be determined by adding the 
sum of the coefficients of the consecutive terms from the prior dimension. This was an empirically-based 
generalization. Pascal’s triangle then became a mechanism for determining an expression for the additional 
volume of a fifth-dimensional figure. Homer said, “Right here, I’m going to write down what it would be if it 
followed the sequence.” He and Barney both wrote “5n4 + 10n3 + 10n2 + 5n1 + 15”, and then they decided to check 
their answer by listing out the arrangements of three ns and two 1s (the 10n3) case, which served to verify that the 
coefficient was indeed 10. As the students reflected on their activity, Homer explained that he did not want to do 
the tedious listing that would be required to double check each coefficient: “I don’t want to check all of these. I 
was just going to check one, to kind of, maybe I’ll check two or something.” Barney then realized that given that 
they had verified the 10n3 case, they did not need to check the 10n2 case: “We can basically just take this and 
switch all the ns to 1s and 1s to ns.” Explaining further, Barney said, “It will be the same combinations here, just 
substituting I for n and n for I” (he inadvertently starting calling the 1s “I”s). This explanation of symmetry caused 
Homer to then extend that finding to new cases: “Oh, and you know what? You can do the same for these (pointing 
to the 5n4 and the 5n1 terms)…you can just replace these 1s for ns.”  

Homer and Barney initially developed a generalization based on the empirical recognition of Pascal’s 
triangle. This empirically-based generalization then provided them with a conjecture for the expression of the 
added volume in the fifth dimension, which they could then check through listing that there were indeed ten 
combinations of three ns and two 1s. Once they had confirmed that coefficient, they looked back at their 
conjectured expression and realized that they would again need to list ten outcomes to check the other coefficient. 
This sparked a desire to avoid repeating the listing process, which motivated a justification for symmetry. Barney 
was able to explain why the coefficients for the n3 term and the n2 term must be the same, which Homer could 
then extend to the n4 and n terms. Homer was therefore able to re-interpret combinatorially what he had first 
conjectured using only the patterns in Pascal’s triangle. The numerical pattern, which was developed from RPG, 
allowed the students to engage in a verification process and subsequently reason about outcomes to justify the 
symmetry in the coefficients. Barney’s reasoning in particular was grounded in operative activity: He was able to 
reflect on his coordination of operations in listing the ten outcomes and realize that there was nothing special 
about the characters n and 1, and that they could simply be reversed in the case of determining the combinations 
of two ns and three 1s.  

Discussion and implications 
We have introduced a new phenomenon, empirical re-conceptualization, in which learners develop an initial 
generalization based on empirical evidence and then are able to re-conceptualize it from a structural perspective. 
The students both carried out structural operations in thought by justifying why it would be legitimate to replace 



ns with 1s for different listing options. Our findings indicate that empirical re-conceptualization can serve as a 
vehicle to transform empirical patterns into meaningful sources of verification, justification, and proof. This 
confirms de Villiers’ (2010) claim that “experimental investigation can also sometimes contribute to the discovery 
of a hidden clue or underlying structure of a problem, leading eventually to the construction or invention of a 
proof” (p. 215). 

Certainly, students may also identify and generalize patterns that they do not understand or cannot justify; 
this remains a common phenomenon. A danger is that students will engage in empirical investigation but then not 
seek to re-conceive their findings structurally. We find it useful to explore the conditions that can best support 
students’ transition to the productive next step, that of engaging in empirical re-conceptualization. Homer and 
Barney had mechanisms by which they could draw their attention back to a combinatorial context. Even though 
they developed empirically-based generalizations, those statements were never far from their understanding of 
the combinatorial situations. This suggests that directing students back towards the contextual genesis of the 
patterns they generalize may be an effective strategy for supporting empirical re-conceptualization. Rather than 
discouraging reliance on empirical patterns or requiring students to prematurely shift to abstracted representations, 
we suggest situating instruction within particular, concrete contexts that can provide a meaningful foundation for 
empirical re-conceptualization. For Homer and Barney, this context was combinatorial; in other cases, we have 
found that contexts that leverage students’ engagement with real-world quantities, such as distance, time, speed, 
length, area, and volume, can similarly provide fruitful supports for understanding and justifying conjectures. 
With the support of concrete contexts for meaning making combined with instructional moves that encourage 
students to consider their empirical findings in light of those contexts, our findings indicate that the activity of 
generalizing empirical patterns can serve as a bridge to more generative and productive mathematical activity. 

References  
Balacheff N., (1987). Processes of proving and situations of validation. Educational Studies in Mathematics, 

18(2), 147 – 176. 
Čadež, T.H., & Kolar, V.M. (2105). Comparison of types of generalizations and problem-solving schemas used 

to solve a mathematical problem. Educational Studies in Mathematics, 89(2), 283 – 306.  
de Villiers, M. (2010). Experimentation and proof in mathematics. In G. Hanna, H.N. Jahnke, & H. Pulte 

(Eds.), Explanation and proof in mathematics (pp. 205-221). Springer, Boston, MA. 
Ellis, A.B., Tillema, E., Lockwood, E., & Moore, K. (2017). Generalization across domains: The relating-forming-

extending framework. In E. Galindo & J. Newton (Eds.), Proceedings of the 39th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 
677 – 684). Indianapolis, IN: Hoosier Association of Mathematics Teacher Educators. 

Harel, G. (2001). The development of mathematical induction as a proof scheme: A Model for DNR-based 
instruction. In S. Campbell & R. Zaskis (Eds.), Learning and teaching number theory (pp. 185—
212). Norwood, NJ: Ablex. 

Harel, G., & Soto, O. (2017). Structural reasoning. International Journal of Research in Undergraduate 
Mathematics Education, 3(1), 225 – 242.  

Knuth, E. J., Choppin, J., & Bieda, K. (2009). Middle school students’ production of mathematical justifications. 
In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across the grades: 
A K-16 perspective (pp. 153-170). New York, NY: Routledge. 

Küchemann, D. (2010). Using patterns generically to see structure. Pedagogies: An International 
Journal, 5(3), 233-250. 

Moore, K. C., Stevens, I. E., Paoletti, T., Hobson, N. L. F., & Liang, B. (In Press). Pre-service teachers’ figurative 
and operative graphing actions. Journal of Mathematical Behavior. 

Piaget, J. (2001). Studies in reflecting abstraction. (R. Campbell, Ed.). Sussex: Psychology Press. 
Stylianides, G. & Stylianides, J. (2009). Facilitating the transition from empirical arguments to proof. Journal for 

Research in Mathematics Education, 40(3), 314-352. 
Tall, D. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 

20(20), 5 – 24.  

Acknowledgments  
The research reported in this paper was supported by the National Science Foundation (grant no. DRL-1419973). 



MATHEMATICS TEACHER: LEARNING & TEACHING PK–12 Volume 113_Issue 00_Month_20201

FEATURE PUBS.NCTM.ORG

Why Multiply?  
Area Measurement and 
Multiplicative Reasoning

Asked to quantify the changes in area of growing rectangles, these students reasoned about  
multiplicative relationships in interesting new ways.

 Brandon K. Singleton and Amy B. Ellis

Think about a rectangle that is 6 cm long and 4 cm tall 
(see figure 1a). Why can the rectangle’s area be found by 
multiplying its length by its width? Despite our best efforts, 
helping children understand why we multiply to measure 
area is an enduring problem. Many students can recite 
the A = L × W formula, but they often do not understand it. 
Making sense of arrays of unit squares is one basis for 
understanding the transformation of length measure-
ments into area measurements. For instance, for a 4-cm 

by 6-cm rectangle, students can think about the area 
as measured in square units, and the total number of 
square units, 24, can be found by imagining a column 
of 4 square centimeters iterated 6 times (see figure 1b).

Some students do develop this meaning. For 
instance, Anya, a sixth grader, calculated the area of a 
1.5-cm by 4-cm rectangle and explained that multiply-
ing made sense because there would be 1.5 rows and  
4 columns: “That creates sort of, like, squares or 
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dimensions. Many students we observed did not make 
the argument Anya provided for the 1.5-cm by 4-cm 
rectangle.

We designed an activity called the Growing 
Rectangle problem that connects multiplication with 
area measurement in a new way. Inspired in part by  
a task given by Johnson (2013), the Growing Rectangle 
problem has three key features:

 
1. Areas are calculated by imagining a transformation 

rather than by measuring a fixed object.
2. The setup provides a length-area pair instead of  

a length-height pair.
3. The prompt allows for multiple initial responses 

as students explore how changes in length and 
area occur together (see figure 2).

We used the Growing Rectangle problem with 13 
middle-school students in grades 6–8. Although nine stu-
dents eventually used the area formula, most did not think 
of the formula immediately. Instead, the students had to 
grapple with how length and area change together. We 
share the thinking of several students below. 

rectangles within the rectangle, and there’s 4 rows of 
1.5. So that would be like 4 times 1.5, so that’s how we  
figure out how many, or how the area would be.” 

Not all students, however, are able to make sense of 
the row-column array structure in the way Anya did.  
For this reason, Battista and colleagues suggest that 
typical instructional treatments of area and multi-
plication should be rethought: “If students do not 
see a row-by-column structure in these arrays, how 
can using multiplication to enumerate the objects in 
these arrays, much less using area formulas, make 
sense to them?” (Battista et al. 1998, p. 531). Students 
may not naturally group the unit squares into rows 
and columns, and if they do, they may not associate 
the number of rows and columns with correspond-
ing side measures. Moreover, imagining partial rows 
and columns is difficult for rectangles with noninteger 
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Fig. 1

For a 4-cm by 6-cm rectangle partitioned into columns and rows, 
students can think about measuring the area in square units (a);  
and finding the total by imagining a column of 4 square centimeters 
iterated 6 times (b).

(a)

(b)

Fig. 2

The Growing Rectangle problem
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students make their ideas explicit and think more pur-
posefully about units of measure. We asked students to 
show where the 6 cm2 were in the rectangle. This can 
be challenging when using unit squares because the 
height is not a whole number. It requires conceiving of 
the 1.5-cm height as 1 square centimeter and 1/2 of a 
square centimeter, iterated 4 times to create 6 square 
centimeters (see figure 5a). 

In Olivia’s case, she partitioned the rectangle into  
4 columns and 3 rows to make 12 rectangular cells. She 
understood that each cell was 0.5 cm tall to make an area 
of 0.5 cm × 1 cm = 0.5 cm2 (see figure 5b), explaining, 
“The height of each of these little boxes would be 0.5. 
And so then, you’d just go 0.5, 1, 1.5 (the entire column), 
and then times 4.” However, Olivia was unable to relate 
the cells in her drawing to square centimeters. When 

OLIVIA: UNIT RATE 
Olivia, a seventh grader, filled in the blanks with 2 and 
3 and explained, “I know that 2 is half of 4, so then I did 
half of 6.” Olivia’s picture in figure 3 shows a growth of  
2 cm in length and 3 cm2 in area. She also developed 
other pairs, such as 3 cm: 4 1/2 cm2, 1 cm: 1 1/2 cm2,  
and 16 cm: 24 cm2. In explaining her work for the  
3 cm: 4 1/2 cm2 pair, Olivia said, “I reduced it to be,  
like, the unit rate of how much it would go up by. So,  
if I know that 1 [centimeter in length] would be 1 1/2  
[centimeters squared in area], then I times that by 3,  
to get 4 1/2.” Olivia recognized that the rectangle gained 
area at the rate of 1 1/2 cm2 for every additional 1 cm  
of length, and she used that rate to find other pairs.

Olivia could also express this relationship as a gen-
eral formula in terms of expressing the growth in area 
for an x-cm growth in length. She wrote “1.5x” and 
explained, “You can replace x with anything.” Olivia 
did not think about 1.5 as the rectangle’s height at this 
point; instead, it was a unit rate expressing how much 
area the rectangle gains per 1 cm of length as it grows 
(see figure 4). 

CONNECTING MULTIPLICATION TO AREA UNITS
In geometric measurement, it is important to under-
stand what the unit of measure is. The Growing 
Rectangle problem gives measurements, but it does 
not indicate what the units that were used for measur-
ing look like. Students must bring their own meanings 
to the problem to infer what a square centimeter is and 
where the 6 cm2 are in the figure. Teachers can help 

Fig. 3

Olivia’s picture of the rectangle growing by 2 cm in length and 
3 cm2 in area.

Fig. 4

The meaning for Olivia’s area formula

Fig. 5

The 1.5 cm by 4 cm rectangle is partitioned into (a) square units;  
and (b) rectangular cells.

(b)

(a)
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Although Spike assumed that a proportional strategy 
must imply similarity, the students in the study that  
Van Dooren and colleagues conducted (2003) assumed 
that similarity must imply a proportional strategy. 

Both the Father Christmas problem and the Growing 
Rectangle problem can cause confusion in students who 
have come to think of similarity and proportionality as 
two sides of the same coin. Typical area tasks may con-
tribute to this confusion if all the proportion problems 
from geometry rely on similar figures. The Growing 
Rectangle problem, in contrast, provides an opportu-
nity to work with proportionality in a geometry setting 
that does not rely on similarity. Teachers could use the 
Growing Rectangle problem as a bridge to making sense 
of similarity by breaking the scaling transformation 
into two steps. Each step involves scaling the area in 
one dimension by a proportional factor k, with the final 
result being an increase by a factor of k2. (View video 1 
for further illustration of scaling in two dimensions.)

the interviewer, said, “I see 12 rectangles,” and asked 
her, “Can you show me where the 6 would be then—the 
6 square centimeters?” Olivia responded, “Well, this 
is kind of the 6. So, the whole thing” [she circled the 
entire rectangle]. 

Although Olivia appeared unfamiliar with the con-
vention that 1 cm2 is a 1-cm by 1-cm square, she showed 
flexibility in partitioning the rectangle and in identifying 
the correct size or amount that corresponded to her 
partition. In many tasks, students are provided with 
square units, such as tiles, and are asked to measure 
areas. They do not have to think about where the unit 
tiles come from. In contrast, the Growing Rectangle 
problem provides students with an area measure 
and challenges them to think about what 1 cm2 rep-
resents. By using partitioning strategies, students can 
come to appreciate that a multiplicative relationship 
exists between the amount contained in one unit and 
the amount contained in the whole measure. Olivia 
was able to relate the amount in one of her cells to the 
whole rectangle by using multiplication, writing the 
6-cm2 area both as 1.5 × 4 and as 12 × .5 (see figure 5b).

SPIKE: PROPORTIONALITY VERSUS SIMILARITY
Like Olivia, Spike (a seventh grader) believed that the 
length and area were proportional. He found new 
pairs of length and area by setting up proportions and 
solving with cross products. However, Spike became 
uncertain about his answers because he realized that 
the growing rectangle did not maintain similarity as it 
grew. Spike confused similarity with proportionality, 
stating, “The length is expanding, but the width isn’t; 
so that wouldn’t make it proportional. That would 
make it a different shape.” Because the rectangle did 
not maintain similarity, Spike came to believe that all of 
his answers were wrong. When he checked his answers 
using the area formula, he was astonished that they 
matched: “Oh that was right. Huh, that’s weird . . . . I’m 
getting the same answers as I had before.” 

Spike is not alone in confusing proportionality and 
similarity. In another study, students solved a problem 
about a window painting of Father Christmas (see figure 6)  
that was to be scaled up by a factor of three (Van Dooren 
et al. 2003). When asked how much paint would be 
needed, almost all the students multiplied the original 
amount by three instead of nine. The students could 
not explain why they believed a proportional strat-
egy worked, stating, “I don’t know. I just solved it that 
way,” and “It just works. I don’t know why” (pp. 206–7). 

Fig. 6

The Father Christmas problem. From “Improper Applications of 
Proportional Reasoning,” by W. Van Dooren, D. De Bock, L. Vershaffel 
and D. Janssens, 2003, Mathematics Teaching in the Middle School 
9, no. 4, p. 205. Reprinted with permission.

Bart is a publicity painter. In the last few days, 
he had to paint Christmas decorations on several 
store windows. Yesterday, he made a drawing of 
a 56 cm high Father Christmas on the door of a 
bakery. He needed 6 ml of paint. Now he is asked 
to make an enlarged version of the same drawing 
on a supermarket window. This copy should be 168 
cm high. Approximately how much paint will Bart 
need to do this? 

Bakery’s door Supermarket window
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CHALLENGES IN SUPPORTING  
MULTIPLICATIVE REASONING 
Not all students to whom we gave the Growing 
Rectangle task related length and area multiplica-
tively. Four students approached the task using addi-
tive rather than multiplicative reasoning. For example, 
Willow, a sixth grader, wrote, “If the length and the 
area grow evenly (by the same amount), the area will 
always be 2 more than the length.” Willow declared the 
area to always be 2 cm greater than the length, regard-
less of what the length would be. Thus, she identified 
a constant difference between length and area rather 
than a constant ratio. If Willow had visualized a very 
long rectangle, such as a 20-cm rectangle or a 100-
cm rectangle, she might have realized that the corre-
sponding area would need to be larger than 22 cm2  
(or 102 cm2). However, it is also possible that Willow 
was not imagining the rectangle’s area in terms of 
units of measure, so this type of visualization may 
not have prompted her to realize that the relationship 
between length and area could not be additive. Another 
approach could be to ask Willow to double the origi-
nal 4-cm long rectangle. If she drew a second rectangle 
next to the first one (as outlined in the dashed version 
in figure 2), Willow could be asked to describe the area 
of the second (identical) rectangle with an additional 
length of 4 cm. This rectangle, being a copy of the first, 
would have 6 cm2 for area, which might help Willow see 
that the total rectangle that was 8 cm long would need 
to have an area of 12 cm2.

Another student, Angelo (an eighth grader), also ini-
tially relied on additive reasoning, stating that a rectan-
gle with a length of 6 cm would have an area of 8 cm2. 
Angelo’s answer, although incorrect, was based on try-
ing to visually estimate the size of the dashed region in 
figure 2. In this case, posing doubling and halving sce-
narios helped Angelo shift to a multiplicative strategy. 
For example, given a growth in length of 4 cm, Angelo 
realized, “I think that it would grow by 12, because is 
4 is doubling, and if that’s 4 centimeters [the original 
length] and that’s 4 centimeters [the growth in length], 
then that [total length] would equal 8 centimeters. And 
then another 6 centimeters [squared, in area] would 
equal 12 centimeters [squared, for the total area].” Then, 
when asked to imagine the rectangle growing by half its 
amount (another 2 cm), Angelo explained, “I think it will 
grow by 3 [cm2], because 4 [cm] divided by 2 is 2 [cm], 
and then 6 [cm2] divided by 2 is 3 [cm2].” Students such 
as Angelo and Willow can benefit from strategies rec-
ommended for fostering initial ratio reasoning, which 
include attending to both quantities (length and area) 
together; making drawings of different-sized rectangles 
together with tables to keep track of length and area 
pairs; beginning with simpler cases such as doubling, 
quadrupling, and halving; and gradually moving to 
more difficult multipliers (Lobato and Ellis 2010).

The Ratio-And-Proportion Meaning
Because students often rely on the area formula without 
understanding why they should multiply, we designed 
the Growing Rectangle problem to encourage ratio rea-
soning. The Growing Rectangle problem affords a new 
way of explaining why we multiply when calculating 
area, and it helps students connect proportional rea-
soning to area measurement. Most problems about area 
in the curriculum involve static shapes, and students 
calculate areas by counting how many unit tiles cover 
the region until they understand row-column arrays 
and derive the formula A = L × W. Students justify 
the formula’s multiplication operation with an equal-
groups meaning or an array meaning. The Growing 
Rectangle problem leverages a different meaning of 
multiplication, the ratio-and-proportion meaning. This 
meaning does not lend itself as readily to the A = L × W 
formula, but it can lead to an algebraic equation based 
on rate thinking. Students use multiplication directly 
and spontaneously to calculate changes in area. They 
iterate and partition ratio pairs just as they would for 
other equal-ratio problem contexts. Multiplication can 
supply a ratio meaning to the units of measure so that a 

Video 1 Scaling Two Dimensions

Watch the full video online.
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• Posing: You can leverage the value of the task by posing sequences of questions that respond to students’ 

thinking and lead students forward. Use students’ initial responses to guide next steps and manage the prob-

lem’s difficulty. You can pose different values in one blank and request the missing value. Choose numbers 

purposefully and think about the relationships involved in moving from one number pair to the next. Skillful 

sequences will help your students confront and overcome challenges. You can also extend the task with new 

shapes, like a growing parallelogram.

• Ratio: This task can help students build their ratio reasoning. Some students may need to start with easier 

numbers that rely on doubling or halving to create ratios. Once they can do that, you can pose values that help 

students build up more complicated ratios. Over time, students should develop a unit ratio and express the 

relationship between length and area algebraically.

• Visuals: In addition to providing students with pictures, consider showing the situation dynamically with tech-

nology and allowing students to drag the rectangle to see its growth. Also, ask students to draw their own fig-

ures and show the quantities they calculate in the figures they have drawn.

• Quantities: Make sure that students do not lose track of the quantities in the situation, such as length, height, 

and area. Ask them to refer to the specific units they have calculated so that they can keep track of the rela-

tionships between the associated quantities. You may need to help students distinguish carefully between 

added growth (such as added length and added area) and total growth.

Implementation tips for the Growing Rectangle problem

6-cm2 object is six times as large as the unit, 1 cm2.
As students reason about the Growing Rectangle 

problem, we should use caution when interpreting 
their proportional strategies. As we saw with Spike, stu-
dents may use proportions computationally before they 
can justify doing so conceptually. Willow and Angelo 
tried out multiplicative strategies only after attempting 
additive ones, and it was not obvious to them at first which 
strategy was correct. Determining why multiplicative  
reasoning is appropriate on the basis of the problem’s 

geometric relationships is important for students. 
Asking them to justify their strategies can help. 

The Growing Rectangle problem is a challenging, 
nonroutine task that can promote problem solving. 
Strategic implementation can help individualize the task 
to each student’s strengths and needs. See the sidebar  
for some implementation tips. With the appropriate 
supports, students can develop multiplicative strategies 
that they can understand, justify, and eventually con-
nect to the area formula. _
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